Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 24
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Sosenka
1
82 kgKrupa
2
74 kgZamana
3
74 kgRoberts
4
71 kgKohut
5
65 kgKonečný
6
67 kgRomanik
7
62 kgJurčo
8
69 kgBrożyna
9
65 kgPiątek
10
71 kgMori
12
77 kgLöfkvist
16
70 kgBroniš
18
74 kgGaliński
19
63 kgNagy
22
52 kgLaverde
23
63 kgRaboň
29
74 kgValach
34
75 kgGrabsch
36
81 kgRiška
47
73 kgHansen
49
72 kgCurvers
54
73 kgMüller
59
79 kgLjungblad
61
70 kgBenčík
67
73 kg
1
82 kgKrupa
2
74 kgZamana
3
74 kgRoberts
4
71 kgKohut
5
65 kgKonečný
6
67 kgRomanik
7
62 kgJurčo
8
69 kgBrożyna
9
65 kgPiątek
10
71 kgMori
12
77 kgLöfkvist
16
70 kgBroniš
18
74 kgGaliński
19
63 kgNagy
22
52 kgLaverde
23
63 kgRaboň
29
74 kgValach
34
75 kgGrabsch
36
81 kgRiška
47
73 kgHansen
49
72 kgCurvers
54
73 kgMüller
59
79 kgLjungblad
61
70 kgBenčík
67
73 kg
Weight (KG) →
Result →
82
52
1
67
# | Rider | Weight (KG) |
---|---|---|
1 | SOSENKA Ondřej | 82 |
2 | KRUPA Dawid | 74 |
3 | ZAMANA Cezary | 74 |
4 | ROBERTS Luke | 71 |
5 | KOHUT Sławomir | 65 |
6 | KONEČNÝ Tomáš | 67 |
7 | ROMANIK Radosław | 62 |
8 | JURČO Matej | 69 |
9 | BROŻYNA Tomasz | 65 |
10 | PIĄTEK Zbigniew | 71 |
12 | MORI Massimiliano | 77 |
16 | LÖFKVIST Thomas | 70 |
18 | BRONIŠ Roman | 74 |
19 | GALIŃSKI Marek | 63 |
22 | NAGY Robert | 52 |
23 | LAVERDE Luis Felipe | 63 |
29 | RABOŇ František | 74 |
34 | VALACH Ján | 75 |
36 | GRABSCH Ralf | 81 |
47 | RIŠKA Martin | 73 |
49 | HANSEN Adam | 72 |
54 | CURVERS Roy | 73 |
59 | MÜLLER Martin | 79 |
61 | LJUNGBLAD Jonas | 70 |
67 | BENČÍK Petr | 73 |