Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 19
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Romanik
1
62 kgAndrle
2
70 kgNissen
4
65 kgFirsanov
6
58 kgBroniš
7
74 kgBole
9
69 kgSchillinger
12
72 kgStrgar
15
62 kgRiška
25
73 kgTybor
26
72 kgOjavee
36
80 kgLund
38
65 kgKönig
39
62 kgVrečer
48
68 kgHegreberg
49
72 kgKux
50
74 kgWagner
65
75 kgAaen Jørgensen
69
63 kgJakin
70
71 kgTerpstra
72
64 kgHauptman
73
70 kgKusztor
77
61 kg
1
62 kgAndrle
2
70 kgNissen
4
65 kgFirsanov
6
58 kgBroniš
7
74 kgBole
9
69 kgSchillinger
12
72 kgStrgar
15
62 kgRiška
25
73 kgTybor
26
72 kgOjavee
36
80 kgLund
38
65 kgKönig
39
62 kgVrečer
48
68 kgHegreberg
49
72 kgKux
50
74 kgWagner
65
75 kgAaen Jørgensen
69
63 kgJakin
70
71 kgTerpstra
72
64 kgHauptman
73
70 kgKusztor
77
61 kg
Weight (KG) →
Result →
80
58
1
77
# | Rider | Weight (KG) |
---|---|---|
1 | ROMANIK Radosław | 62 |
2 | ANDRLE René | 70 |
4 | NISSEN Søren | 65 |
6 | FIRSANOV Sergey | 58 |
7 | BRONIŠ Roman | 74 |
9 | BOLE Grega | 69 |
12 | SCHILLINGER Andreas | 72 |
15 | STRGAR Matic | 62 |
25 | RIŠKA Martin | 73 |
26 | TYBOR Patrik | 72 |
36 | OJAVEE Mart | 80 |
38 | LUND Anders | 65 |
39 | KÖNIG Leopold | 62 |
48 | VREČER Robert | 68 |
49 | HEGREBERG Morten | 72 |
50 | KUX Christian | 74 |
65 | WAGNER Robert | 75 |
69 | AAEN JØRGENSEN Jonas | 63 |
70 | JAKIN Alo | 71 |
72 | TERPSTRA Mike | 64 |
73 | HAUPTMAN Andrej | 70 |
77 | KUSZTOR Péter | 61 |