Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight + 9
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Strgar
1
62 kgBroniš
4
74 kgBole
8
69 kgHegreberg
12
72 kgTybor
13
72 kgSchillinger
15
72 kgKusztor
17
61 kgRomanik
18
62 kgAndrle
21
70 kgTerpstra
25
64 kgNissen
28
65 kgAaen Jørgensen
33
63 kgJakin
36
71 kgVrečer
40
68 kgWagner
51
75 kgFirsanov
53
58 kgLund
55
65 kgOjavee
57
80 kgKux
68
74 kgHauptman
71
70 kgRiška
89
73 kgKönig
100
62 kg
1
62 kgBroniš
4
74 kgBole
8
69 kgHegreberg
12
72 kgTybor
13
72 kgSchillinger
15
72 kgKusztor
17
61 kgRomanik
18
62 kgAndrle
21
70 kgTerpstra
25
64 kgNissen
28
65 kgAaen Jørgensen
33
63 kgJakin
36
71 kgVrečer
40
68 kgWagner
51
75 kgFirsanov
53
58 kgLund
55
65 kgOjavee
57
80 kgKux
68
74 kgHauptman
71
70 kgRiška
89
73 kgKönig
100
62 kg
Weight (KG) →
Result →
80
58
1
100
# | Rider | Weight (KG) |
---|---|---|
1 | STRGAR Matic | 62 |
4 | BRONIŠ Roman | 74 |
8 | BOLE Grega | 69 |
12 | HEGREBERG Morten | 72 |
13 | TYBOR Patrik | 72 |
15 | SCHILLINGER Andreas | 72 |
17 | KUSZTOR Péter | 61 |
18 | ROMANIK Radosław | 62 |
21 | ANDRLE René | 70 |
25 | TERPSTRA Mike | 64 |
28 | NISSEN Søren | 65 |
33 | AAEN JØRGENSEN Jonas | 63 |
36 | JAKIN Alo | 71 |
40 | VREČER Robert | 68 |
51 | WAGNER Robert | 75 |
53 | FIRSANOV Sergey | 58 |
55 | LUND Anders | 65 |
57 | OJAVEE Mart | 80 |
68 | KUX Christian | 74 |
71 | HAUPTMAN Andrej | 70 |
89 | RIŠKA Martin | 73 |
100 | KÖNIG Leopold | 62 |