Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 103
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Hayles
4
80 kgAug
13
83 kgTraksel
18
72 kgDekkers
20
72 kgCordes
23
70 kgLauk
28
77 kgMouris
32
91 kgTankink
41
71 kgMaasikmets
45
67 kgGates
46
71 kgCarlström
48
70 kgKukk
72
74 kgSentjens
76
75 kgVeneberg
80
75 kgCollinelli
94
77 kgSchep
96
80 kgNewton
102
69 kgManning
116
76 kg
4
80 kgAug
13
83 kgTraksel
18
72 kgDekkers
20
72 kgCordes
23
70 kgLauk
28
77 kgMouris
32
91 kgTankink
41
71 kgMaasikmets
45
67 kgGates
46
71 kgCarlström
48
70 kgKukk
72
74 kgSentjens
76
75 kgVeneberg
80
75 kgCollinelli
94
77 kgSchep
96
80 kgNewton
102
69 kgManning
116
76 kg
Weight (KG) →
Result →
91
67
4
116
# | Rider | Weight (KG) |
---|---|---|
4 | HAYLES Robert | 80 |
13 | AUG Andrus | 83 |
18 | TRAKSEL Bobbie | 72 |
20 | DEKKERS Hans | 72 |
23 | CORDES Tom | 70 |
28 | LAUK Andres | 77 |
32 | MOURIS Jens | 91 |
41 | TANKINK Bram | 71 |
45 | MAASIKMETS Alges | 67 |
46 | GATES Nick | 71 |
48 | CARLSTRÖM Kjell | 70 |
72 | KUKK Sigvard | 74 |
76 | SENTJENS Roy | 75 |
80 | VENEBERG Thorwald | 75 |
94 | COLLINELLI Andrea | 77 |
96 | SCHEP Peter | 80 |
102 | NEWTON Christopher | 69 |
116 | MANNING Paul | 76 |