Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight + 25
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Cordes
4
70 kgSentjens
17
75 kgLauk
22
77 kgHayles
25
80 kgNewton
32
69 kgTankink
48
71 kgKukk
51
74 kgMouris
58
91 kgMaasikmets
63
67 kgAug
65
83 kgCarlström
68
70 kgTraksel
70
72 kgManning
74
76 kgVeneberg
82
75 kgDekkers
86
72 kgGates
89
71 kgSchep
97
80 kgCollinelli
101
77 kg
4
70 kgSentjens
17
75 kgLauk
22
77 kgHayles
25
80 kgNewton
32
69 kgTankink
48
71 kgKukk
51
74 kgMouris
58
91 kgMaasikmets
63
67 kgAug
65
83 kgCarlström
68
70 kgTraksel
70
72 kgManning
74
76 kgVeneberg
82
75 kgDekkers
86
72 kgGates
89
71 kgSchep
97
80 kgCollinelli
101
77 kg
Weight (KG) →
Result →
91
67
4
101
# | Rider | Weight (KG) |
---|---|---|
4 | CORDES Tom | 70 |
17 | SENTJENS Roy | 75 |
22 | LAUK Andres | 77 |
25 | HAYLES Robert | 80 |
32 | NEWTON Christopher | 69 |
48 | TANKINK Bram | 71 |
51 | KUKK Sigvard | 74 |
58 | MOURIS Jens | 91 |
63 | MAASIKMETS Alges | 67 |
65 | AUG Andrus | 83 |
68 | CARLSTRÖM Kjell | 70 |
70 | TRAKSEL Bobbie | 72 |
74 | MANNING Paul | 76 |
82 | VENEBERG Thorwald | 75 |
86 | DEKKERS Hans | 72 |
89 | GATES Nick | 71 |
97 | SCHEP Peter | 80 |
101 | COLLINELLI Andrea | 77 |