Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Dekkers
2
72 kgStrgar
3
62 kgvan Hummel
9
64 kgMarin
22
67 kgMouris
38
91 kgPosthuma
43
76 kgMeinert-Nielsen
45
73 kgSoutham
46
69 kgDe Weert
47
70 kgGazvoda
48
72 kgde Kort
50
69 kgShpilevsky
80
78 kgHoogerland
81
65 kgDe Fauw
92
77 kgFirsanov
104
58 kgSchep
108
80 kg
2
72 kgStrgar
3
62 kgvan Hummel
9
64 kgMarin
22
67 kgMouris
38
91 kgPosthuma
43
76 kgMeinert-Nielsen
45
73 kgSoutham
46
69 kgDe Weert
47
70 kgGazvoda
48
72 kgde Kort
50
69 kgShpilevsky
80
78 kgHoogerland
81
65 kgDe Fauw
92
77 kgFirsanov
104
58 kgSchep
108
80 kg
Weight (KG) →
Result →
91
58
2
108
# | Rider | Weight (KG) |
---|---|---|
2 | DEKKERS Hans | 72 |
3 | STRGAR Matic | 62 |
9 | VAN HUMMEL Kenny | 64 |
22 | MARIN Matej | 67 |
38 | MOURIS Jens | 91 |
43 | POSTHUMA Joost | 76 |
45 | MEINERT-NIELSEN Peter | 73 |
46 | SOUTHAM Tom | 69 |
47 | DE WEERT Kevin | 70 |
48 | GAZVODA Gregor | 72 |
50 | DE KORT Koen | 69 |
80 | SHPILEVSKY Boris | 78 |
81 | HOOGERLAND Johnny | 65 |
92 | DE FAUW Dimitri | 77 |
104 | FIRSANOV Sergey | 58 |
108 | SCHEP Peter | 80 |