Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 16
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Marin
7
67 kgDe Weert
18
70 kgde Kort
24
69 kgPosthuma
31
76 kgvan Hummel
35
64 kgGazvoda
38
72 kgHoogerland
42
65 kgFirsanov
43
58 kgMouris
49
91 kgShpilevsky
71
78 kgDekkers
77
72 kgMeinert-Nielsen
81
73 kgSoutham
89
69 kgStrgar
99
62 kgDe Fauw
111
77 kgSchep
115
80 kg
7
67 kgDe Weert
18
70 kgde Kort
24
69 kgPosthuma
31
76 kgvan Hummel
35
64 kgGazvoda
38
72 kgHoogerland
42
65 kgFirsanov
43
58 kgMouris
49
91 kgShpilevsky
71
78 kgDekkers
77
72 kgMeinert-Nielsen
81
73 kgSoutham
89
69 kgStrgar
99
62 kgDe Fauw
111
77 kgSchep
115
80 kg
Weight (KG) →
Result →
91
58
7
115
# | Rider | Weight (KG) |
---|---|---|
7 | MARIN Matej | 67 |
18 | DE WEERT Kevin | 70 |
24 | DE KORT Koen | 69 |
31 | POSTHUMA Joost | 76 |
35 | VAN HUMMEL Kenny | 64 |
38 | GAZVODA Gregor | 72 |
42 | HOOGERLAND Johnny | 65 |
43 | FIRSANOV Sergey | 58 |
49 | MOURIS Jens | 91 |
71 | SHPILEVSKY Boris | 78 |
77 | DEKKERS Hans | 72 |
81 | MEINERT-NIELSEN Peter | 73 |
89 | SOUTHAM Tom | 69 |
99 | STRGAR Matic | 62 |
111 | DE FAUW Dimitri | 77 |
115 | SCHEP Peter | 80 |