Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 97
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
De Fauw
3
77 kgShpilevsky
12
78 kgStrgar
27
62 kgMouris
31
91 kgPosthuma
36
76 kgHoogerland
39
65 kgGazvoda
43
72 kgMeinert-Nielsen
49
73 kgSoutham
51
69 kgde Kort
57
69 kgMarin
60
67 kgDe Weert
63
70 kgFirsanov
67
58 kgvan Hummel
74
64 kgDekkers
81
72 kgSchep
110
80 kg
3
77 kgShpilevsky
12
78 kgStrgar
27
62 kgMouris
31
91 kgPosthuma
36
76 kgHoogerland
39
65 kgGazvoda
43
72 kgMeinert-Nielsen
49
73 kgSoutham
51
69 kgde Kort
57
69 kgMarin
60
67 kgDe Weert
63
70 kgFirsanov
67
58 kgvan Hummel
74
64 kgDekkers
81
72 kgSchep
110
80 kg
Weight (KG) →
Result →
91
58
3
110
# | Rider | Weight (KG) |
---|---|---|
3 | DE FAUW Dimitri | 77 |
12 | SHPILEVSKY Boris | 78 |
27 | STRGAR Matic | 62 |
31 | MOURIS Jens | 91 |
36 | POSTHUMA Joost | 76 |
39 | HOOGERLAND Johnny | 65 |
43 | GAZVODA Gregor | 72 |
49 | MEINERT-NIELSEN Peter | 73 |
51 | SOUTHAM Tom | 69 |
57 | DE KORT Koen | 69 |
60 | MARIN Matej | 67 |
63 | DE WEERT Kevin | 70 |
67 | FIRSANOV Sergey | 58 |
74 | VAN HUMMEL Kenny | 64 |
81 | DEKKERS Hans | 72 |
110 | SCHEP Peter | 80 |