Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 67
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Posthuma
1
76 kgde Kort
3
69 kgChristensen
5
69 kgHoogerland
8
65 kgMaaskant
9
76 kgElijzen
13
80 kgMouris
14
91 kgDekkers
15
72 kgvan Hummel
17
64 kgCurvers
20
73 kgMarin
21
67 kgFlens
25
82 kgKozontchuk
27
75 kgVeelers
30
75 kgRogina
31
70 kgZonneveld
33
63 kgSutherland
41
75 kgRollin
50
83 kgKaisen
57
82 kgPedersen
63
62 kgFirsanov
67
58 kgClement
69
66 kgTerpstra
76
75 kg
1
76 kgde Kort
3
69 kgChristensen
5
69 kgHoogerland
8
65 kgMaaskant
9
76 kgElijzen
13
80 kgMouris
14
91 kgDekkers
15
72 kgvan Hummel
17
64 kgCurvers
20
73 kgMarin
21
67 kgFlens
25
82 kgKozontchuk
27
75 kgVeelers
30
75 kgRogina
31
70 kgZonneveld
33
63 kgSutherland
41
75 kgRollin
50
83 kgKaisen
57
82 kgPedersen
63
62 kgFirsanov
67
58 kgClement
69
66 kgTerpstra
76
75 kg
Weight (KG) →
Result →
91
58
1
76
# | Rider | Weight (KG) |
---|---|---|
1 | POSTHUMA Joost | 76 |
3 | DE KORT Koen | 69 |
5 | CHRISTENSEN Mads | 69 |
8 | HOOGERLAND Johnny | 65 |
9 | MAASKANT Martijn | 76 |
13 | ELIJZEN Michiel | 80 |
14 | MOURIS Jens | 91 |
15 | DEKKERS Hans | 72 |
17 | VAN HUMMEL Kenny | 64 |
20 | CURVERS Roy | 73 |
21 | MARIN Matej | 67 |
25 | FLENS Rick | 82 |
27 | KOZONTCHUK Dmitry | 75 |
30 | VEELERS Tom | 75 |
31 | ROGINA Radoslav | 70 |
33 | ZONNEVELD Thijs | 63 |
41 | SUTHERLAND Rory | 75 |
50 | ROLLIN Dominique | 83 |
57 | KAISEN Olivier | 82 |
63 | PEDERSEN Martin | 62 |
67 | FIRSANOV Sergey | 58 |
69 | CLEMENT Stef | 66 |
76 | TERPSTRA Niki | 75 |