Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 16
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Dekkers
1
72 kgvan Hummel
4
64 kgMaaskant
8
76 kgPosthuma
9
76 kgClement
13
66 kgMouris
18
91 kgVeelers
21
75 kgde Kort
22
69 kgKozontchuk
25
75 kgRogina
26
70 kgZonneveld
27
63 kgChristensen
28
69 kgSutherland
29
75 kgElijzen
30
80 kgTerpstra
31
75 kgHoogerland
34
65 kgPedersen
36
62 kgCurvers
38
73 kgRollin
40
83 kgMarin
41
67 kgKaisen
44
82 kg
1
72 kgvan Hummel
4
64 kgMaaskant
8
76 kgPosthuma
9
76 kgClement
13
66 kgMouris
18
91 kgVeelers
21
75 kgde Kort
22
69 kgKozontchuk
25
75 kgRogina
26
70 kgZonneveld
27
63 kgChristensen
28
69 kgSutherland
29
75 kgElijzen
30
80 kgTerpstra
31
75 kgHoogerland
34
65 kgPedersen
36
62 kgCurvers
38
73 kgRollin
40
83 kgMarin
41
67 kgKaisen
44
82 kg
Weight (KG) →
Result →
91
62
1
44
# | Rider | Weight (KG) |
---|---|---|
1 | DEKKERS Hans | 72 |
4 | VAN HUMMEL Kenny | 64 |
8 | MAASKANT Martijn | 76 |
9 | POSTHUMA Joost | 76 |
13 | CLEMENT Stef | 66 |
18 | MOURIS Jens | 91 |
21 | VEELERS Tom | 75 |
22 | DE KORT Koen | 69 |
25 | KOZONTCHUK Dmitry | 75 |
26 | ROGINA Radoslav | 70 |
27 | ZONNEVELD Thijs | 63 |
28 | CHRISTENSEN Mads | 69 |
29 | SUTHERLAND Rory | 75 |
30 | ELIJZEN Michiel | 80 |
31 | TERPSTRA Niki | 75 |
34 | HOOGERLAND Johnny | 65 |
36 | PEDERSEN Martin | 62 |
38 | CURVERS Roy | 73 |
40 | ROLLIN Dominique | 83 |
41 | MARIN Matej | 67 |
44 | KAISEN Olivier | 82 |