Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 28
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Kozontchuk
6
75 kgde Kort
7
69 kgZonneveld
9
63 kgChristensen
10
69 kgPosthuma
11
76 kgSutherland
13
75 kgRogina
14
70 kgCurvers
16
73 kgMarin
17
67 kgMaaskant
19
76 kgHoogerland
21
65 kgElijzen
26
80 kgFlens
38
82 kgKaisen
39
82 kgMouris
41
91 kgFirsanov
42
58 kgVeelers
46
75 kgRollin
50
83 kgvan Hummel
52
64 kgDekkers
53
72 kgClement
60
66 kgPedersen
66
62 kgTerpstra
74
75 kg
6
75 kgde Kort
7
69 kgZonneveld
9
63 kgChristensen
10
69 kgPosthuma
11
76 kgSutherland
13
75 kgRogina
14
70 kgCurvers
16
73 kgMarin
17
67 kgMaaskant
19
76 kgHoogerland
21
65 kgElijzen
26
80 kgFlens
38
82 kgKaisen
39
82 kgMouris
41
91 kgFirsanov
42
58 kgVeelers
46
75 kgRollin
50
83 kgvan Hummel
52
64 kgDekkers
53
72 kgClement
60
66 kgPedersen
66
62 kgTerpstra
74
75 kg
Weight (KG) →
Result →
91
58
6
74
# | Rider | Weight (KG) |
---|---|---|
6 | KOZONTCHUK Dmitry | 75 |
7 | DE KORT Koen | 69 |
9 | ZONNEVELD Thijs | 63 |
10 | CHRISTENSEN Mads | 69 |
11 | POSTHUMA Joost | 76 |
13 | SUTHERLAND Rory | 75 |
14 | ROGINA Radoslav | 70 |
16 | CURVERS Roy | 73 |
17 | MARIN Matej | 67 |
19 | MAASKANT Martijn | 76 |
21 | HOOGERLAND Johnny | 65 |
26 | ELIJZEN Michiel | 80 |
38 | FLENS Rick | 82 |
39 | KAISEN Olivier | 82 |
41 | MOURIS Jens | 91 |
42 | FIRSANOV Sergey | 58 |
46 | VEELERS Tom | 75 |
50 | ROLLIN Dominique | 83 |
52 | VAN HUMMEL Kenny | 64 |
53 | DEKKERS Hans | 72 |
60 | CLEMENT Stef | 66 |
66 | PEDERSEN Martin | 62 |
74 | TERPSTRA Niki | 75 |