Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 18
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Kozontchuk
3
75 kgCurvers
6
73 kgvan Hummel
8
64 kgLloyd
10
70 kgvan Groen
11
69 kgMazur
12
73 kgVeelers
13
75 kgDekker
14
69 kgVastaranta
16
63 kgGiling
19
72 kgHonig
20
61 kgMaaskant
21
76 kgHeijboer
22
78 kgde Kort
23
69 kgTerpstra
26
75 kgElijzen
27
80 kgPedersen
29
62 kgReus
31
70 kgBreschel
32
70 kg
3
75 kgCurvers
6
73 kgvan Hummel
8
64 kgLloyd
10
70 kgvan Groen
11
69 kgMazur
12
73 kgVeelers
13
75 kgDekker
14
69 kgVastaranta
16
63 kgGiling
19
72 kgHonig
20
61 kgMaaskant
21
76 kgHeijboer
22
78 kgde Kort
23
69 kgTerpstra
26
75 kgElijzen
27
80 kgPedersen
29
62 kgReus
31
70 kgBreschel
32
70 kg
Weight (KG) →
Result →
80
61
3
32
# | Rider | Weight (KG) |
---|---|---|
3 | KOZONTCHUK Dmitry | 75 |
6 | CURVERS Roy | 73 |
8 | VAN HUMMEL Kenny | 64 |
10 | LLOYD Daniel | 70 |
11 | VAN GROEN Arnoud | 69 |
12 | MAZUR Peter | 73 |
13 | VEELERS Tom | 75 |
14 | DEKKER Thomas | 69 |
16 | VASTARANTA Jukka | 63 |
19 | GILING Bas | 72 |
20 | HONIG Reinier | 61 |
21 | MAASKANT Martijn | 76 |
22 | HEIJBOER Mathieu | 78 |
23 | DE KORT Koen | 69 |
26 | TERPSTRA Niki | 75 |
27 | ELIJZEN Michiel | 80 |
29 | PEDERSEN Martin | 62 |
31 | REUS Kai | 70 |
32 | BRESCHEL Matti | 70 |