Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 14
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Dekker
1
69 kgGiling
2
72 kgReus
3
70 kgChristensen
4
69 kgde Kort
5
69 kgMaaskant
6
76 kgLund
8
65 kgBreschel
10
70 kgKozontchuk
11
75 kgHoogerland
12
65 kgVeelers
13
75 kgMazur
15
73 kgvan Groen
17
69 kgPedersen
18
62 kgvan Hummel
19
64 kgGoesinnen
20
75 kgFlens
21
82 kgElijzen
23
80 kgHonig
24
61 kgKaisen
27
82 kgBellemakers
33
75 kg
1
69 kgGiling
2
72 kgReus
3
70 kgChristensen
4
69 kgde Kort
5
69 kgMaaskant
6
76 kgLund
8
65 kgBreschel
10
70 kgKozontchuk
11
75 kgHoogerland
12
65 kgVeelers
13
75 kgMazur
15
73 kgvan Groen
17
69 kgPedersen
18
62 kgvan Hummel
19
64 kgGoesinnen
20
75 kgFlens
21
82 kgElijzen
23
80 kgHonig
24
61 kgKaisen
27
82 kgBellemakers
33
75 kg
Weight (KG) →
Result →
82
61
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | DEKKER Thomas | 69 |
2 | GILING Bas | 72 |
3 | REUS Kai | 70 |
4 | CHRISTENSEN Mads | 69 |
5 | DE KORT Koen | 69 |
6 | MAASKANT Martijn | 76 |
8 | LUND Anders | 65 |
10 | BRESCHEL Matti | 70 |
11 | KOZONTCHUK Dmitry | 75 |
12 | HOOGERLAND Johnny | 65 |
13 | VEELERS Tom | 75 |
15 | MAZUR Peter | 73 |
17 | VAN GROEN Arnoud | 69 |
18 | PEDERSEN Martin | 62 |
19 | VAN HUMMEL Kenny | 64 |
20 | GOESINNEN Floris | 75 |
21 | FLENS Rick | 82 |
23 | ELIJZEN Michiel | 80 |
24 | HONIG Reinier | 61 |
27 | KAISEN Olivier | 82 |
33 | BELLEMAKERS Dirk | 75 |