Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Dekkers
1
72 kgPedersen
2
62 kgMørkøv
3
71 kgde Maar
4
70 kgMaaskant
5
76 kgVeelers
6
75 kgMatysiak
8
71 kgStroetinga
9
69 kgHeijboer
10
78 kgvan Hummel
11
64 kgHonig
15
61 kgElijzen
16
80 kgClement
19
66 kgBodnar
20
77 kgRooijakkers
21
68 kgTaciak
26
68 kgTerpstra
29
75 kgFlens
30
82 kgHoogerland
34
65 kg
1
72 kgPedersen
2
62 kgMørkøv
3
71 kgde Maar
4
70 kgMaaskant
5
76 kgVeelers
6
75 kgMatysiak
8
71 kgStroetinga
9
69 kgHeijboer
10
78 kgvan Hummel
11
64 kgHonig
15
61 kgElijzen
16
80 kgClement
19
66 kgBodnar
20
77 kgRooijakkers
21
68 kgTaciak
26
68 kgTerpstra
29
75 kgFlens
30
82 kgHoogerland
34
65 kg
Weight (KG) →
Result →
82
61
1
34
# | Rider | Weight (KG) |
---|---|---|
1 | DEKKERS Hans | 72 |
2 | PEDERSEN Martin | 62 |
3 | MØRKØV Michael | 71 |
4 | DE MAAR Marc | 70 |
5 | MAASKANT Martijn | 76 |
6 | VEELERS Tom | 75 |
8 | MATYSIAK Bartłomiej | 71 |
9 | STROETINGA Wim | 69 |
10 | HEIJBOER Mathieu | 78 |
11 | VAN HUMMEL Kenny | 64 |
15 | HONIG Reinier | 61 |
16 | ELIJZEN Michiel | 80 |
19 | CLEMENT Stef | 66 |
20 | BODNAR Maciej | 77 |
21 | ROOIJAKKERS Piet | 68 |
26 | TACIAK Mateusz | 68 |
29 | TERPSTRA Niki | 75 |
30 | FLENS Rick | 82 |
34 | HOOGERLAND Johnny | 65 |