Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 14
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Dekkers
1
72 kgPedersen
2
62 kgMaaskant
3
76 kgClement
7
66 kgvan Hummel
8
64 kgHeijboer
10
78 kgMatysiak
11
71 kgde Maar
12
70 kgMørkøv
13
71 kgVeelers
18
75 kgStroetinga
20
69 kgKozontchuk
21
75 kgFlens
24
82 kgTaciak
25
68 kgHonig
27
61 kgElijzen
28
80 kgBagdonas
29
78 kgvan Leijen
35
73 kgRooijakkers
36
68 kgvan Groen
38
69 kgTerpstra
40
75 kgHoogerland
51
65 kg
1
72 kgPedersen
2
62 kgMaaskant
3
76 kgClement
7
66 kgvan Hummel
8
64 kgHeijboer
10
78 kgMatysiak
11
71 kgde Maar
12
70 kgMørkøv
13
71 kgVeelers
18
75 kgStroetinga
20
69 kgKozontchuk
21
75 kgFlens
24
82 kgTaciak
25
68 kgHonig
27
61 kgElijzen
28
80 kgBagdonas
29
78 kgvan Leijen
35
73 kgRooijakkers
36
68 kgvan Groen
38
69 kgTerpstra
40
75 kgHoogerland
51
65 kg
Weight (KG) →
Result →
82
61
1
51
# | Rider | Weight (KG) |
---|---|---|
1 | DEKKERS Hans | 72 |
2 | PEDERSEN Martin | 62 |
3 | MAASKANT Martijn | 76 |
7 | CLEMENT Stef | 66 |
8 | VAN HUMMEL Kenny | 64 |
10 | HEIJBOER Mathieu | 78 |
11 | MATYSIAK Bartłomiej | 71 |
12 | DE MAAR Marc | 70 |
13 | MØRKØV Michael | 71 |
18 | VEELERS Tom | 75 |
20 | STROETINGA Wim | 69 |
21 | KOZONTCHUK Dmitry | 75 |
24 | FLENS Rick | 82 |
25 | TACIAK Mateusz | 68 |
27 | HONIG Reinier | 61 |
28 | ELIJZEN Michiel | 80 |
29 | BAGDONAS Gediminas | 78 |
35 | VAN LEIJEN Joost | 73 |
36 | ROOIJAKKERS Piet | 68 |
38 | VAN GROEN Arnoud | 69 |
40 | TERPSTRA Niki | 75 |
51 | HOOGERLAND Johnny | 65 |