Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 37
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Božič
1
70 kgVeelers
2
75 kgStroetinga
6
69 kgAaen Jørgensen
8
63 kgFlens
9
82 kgBagdonas
10
78 kgMaaskant
12
76 kgvan Leijen
15
73 kgMahorič
16
68 kgLeezer
18
76 kgKruopis
19
80 kgTerpstra
20
75 kgBommel
21
75 kgvan Groen
23
69 kgHonig
25
61 kgBengsch
26
85 kgAl
28
72 kgBroniš
29
74 kgLund
34
65 kgDuijn
35
73 kgMarin
37
67 kg
1
70 kgVeelers
2
75 kgStroetinga
6
69 kgAaen Jørgensen
8
63 kgFlens
9
82 kgBagdonas
10
78 kgMaaskant
12
76 kgvan Leijen
15
73 kgMahorič
16
68 kgLeezer
18
76 kgKruopis
19
80 kgTerpstra
20
75 kgBommel
21
75 kgvan Groen
23
69 kgHonig
25
61 kgBengsch
26
85 kgAl
28
72 kgBroniš
29
74 kgLund
34
65 kgDuijn
35
73 kgMarin
37
67 kg
Weight (KG) →
Result →
85
61
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | BOŽIČ Borut | 70 |
2 | VEELERS Tom | 75 |
6 | STROETINGA Wim | 69 |
8 | AAEN JØRGENSEN Jonas | 63 |
9 | FLENS Rick | 82 |
10 | BAGDONAS Gediminas | 78 |
12 | MAASKANT Martijn | 76 |
15 | VAN LEIJEN Joost | 73 |
16 | MAHORIČ Mitja | 68 |
18 | LEEZER Tom | 76 |
19 | KRUOPIS Aidis | 80 |
20 | TERPSTRA Niki | 75 |
21 | BOMMEL Henning | 75 |
23 | VAN GROEN Arnoud | 69 |
25 | HONIG Reinier | 61 |
26 | BENGSCH Robert | 85 |
28 | AL Thijs | 72 |
29 | BRONIŠ Roman | 74 |
34 | LUND Anders | 65 |
35 | DUIJN Huub | 73 |
37 | MARIN Matej | 67 |