Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Vermeltfoort
1
85 kgBoom
2
75 kgWestra
3
74 kgLjungblad
7
70 kgHoogerland
10
65 kgFriedemann
12
75 kgKluge
13
83 kgKristoff
14
78 kgvan Groen
15
69 kgVan Staeyen
18
62 kgKreder
19
67 kgvan Emden
20
78 kgvan Zandbeek
25
72 kgCastroviejo
27
62 kgAriesen
28
70 kgHonig
29
61 kgScheuneman
31
75 kgOostlander
41
78 kgMol
43
83 kgKlemme
45
72 kg
1
85 kgBoom
2
75 kgWestra
3
74 kgLjungblad
7
70 kgHoogerland
10
65 kgFriedemann
12
75 kgKluge
13
83 kgKristoff
14
78 kgvan Groen
15
69 kgVan Staeyen
18
62 kgKreder
19
67 kgvan Emden
20
78 kgvan Zandbeek
25
72 kgCastroviejo
27
62 kgAriesen
28
70 kgHonig
29
61 kgScheuneman
31
75 kgOostlander
41
78 kgMol
43
83 kgKlemme
45
72 kg
Weight (KG) →
Result →
85
61
1
45
# | Rider | Weight (KG) |
---|---|---|
1 | VERMELTFOORT Coen | 85 |
2 | BOOM Lars | 75 |
3 | WESTRA Lieuwe | 74 |
7 | LJUNGBLAD Jonas | 70 |
10 | HOOGERLAND Johnny | 65 |
12 | FRIEDEMANN Matthias | 75 |
13 | KLUGE Roger | 83 |
14 | KRISTOFF Alexander | 78 |
15 | VAN GROEN Arnoud | 69 |
18 | VAN STAEYEN Michael | 62 |
19 | KREDER Michel | 67 |
20 | VAN EMDEN Jos | 78 |
25 | VAN ZANDBEEK Ronan | 72 |
27 | CASTROVIEJO Jonathan | 62 |
28 | ARIESEN Johim | 70 |
29 | HONIG Reinier | 61 |
31 | SCHEUNEMAN Niels | 75 |
41 | OOSTLANDER Sander | 78 |
43 | MOL Wouter | 83 |
45 | KLEMME Dominic | 72 |