Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.7 * weight - 93
This means that on average for every extra kilogram weight a rider loses 1.7 positions in the result.
van Garderen
1
72 kgFairly
2
60 kgNordhaug
3
63 kgvan Leijen
4
73 kgAl
6
72 kgKreder
10
70 kgBol
11
71 kgvan Winden
12
70 kgKristoff
16
78 kgDufrasne
17
70 kgLaengen
31
79 kgChaigneau
37
80 kgLindeman
42
69 kgSchep
43
80 kgKreder
44
71 kgSchmitz
50
77 kgBeukeboom
53
88 kgPedersen
54
62 kgBos
58
77 kgvan Lakerveld
71
85 kg
1
72 kgFairly
2
60 kgNordhaug
3
63 kgvan Leijen
4
73 kgAl
6
72 kgKreder
10
70 kgBol
11
71 kgvan Winden
12
70 kgKristoff
16
78 kgDufrasne
17
70 kgLaengen
31
79 kgChaigneau
37
80 kgLindeman
42
69 kgSchep
43
80 kgKreder
44
71 kgSchmitz
50
77 kgBeukeboom
53
88 kgPedersen
54
62 kgBos
58
77 kgvan Lakerveld
71
85 kg
Weight (KG) →
Result →
88
60
1
71
# | Rider | Weight (KG) |
---|---|---|
1 | VAN GARDEREN Tejay | 72 |
2 | FAIRLY Caleb | 60 |
3 | NORDHAUG Lars Petter | 63 |
4 | VAN LEIJEN Joost | 73 |
6 | AL Thijs | 72 |
10 | KREDER Raymond | 70 |
11 | BOL Jetse | 71 |
12 | VAN WINDEN Dennis | 70 |
16 | KRISTOFF Alexander | 78 |
17 | DUFRASNE Jonathan | 70 |
31 | LAENGEN Vegard Stake | 79 |
37 | CHAIGNEAU Robin | 80 |
42 | LINDEMAN Bert-Jan | 69 |
43 | SCHEP Peter | 80 |
44 | KREDER Wesley | 71 |
50 | SCHMITZ Bram | 77 |
53 | BEUKEBOOM Dion | 88 |
54 | PEDERSEN Martin | 62 |
58 | BOS Theo | 77 |
71 | VAN LAKERVELD Erik | 85 |