Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 9
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Vermeltfoort
1
85 kgHowson
3
68 kgStroetinga
4
69 kgWippert
5
75 kgMulhern
6
75 kgPhelan
7
73 kgGroenewegen
8
70 kgFlakemore
10
72 kgAriesen
12
70 kgAsselman
13
69 kgvan Baarle
15
78 kgO'Shea
16
76 kgZabel
17
81 kgAvery
18
90 kgZepuntke
22
76 kgde Vries
25
70 kgGate
26
71 kgTeunissen
28
73 kgVingerling
29
75 kg
1
85 kgHowson
3
68 kgStroetinga
4
69 kgWippert
5
75 kgMulhern
6
75 kgPhelan
7
73 kgGroenewegen
8
70 kgFlakemore
10
72 kgAriesen
12
70 kgAsselman
13
69 kgvan Baarle
15
78 kgO'Shea
16
76 kgZabel
17
81 kgAvery
18
90 kgZepuntke
22
76 kgde Vries
25
70 kgGate
26
71 kgTeunissen
28
73 kgVingerling
29
75 kg
Weight (KG) →
Result →
90
68
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | VERMELTFOORT Coen | 85 |
3 | HOWSON Damien | 68 |
4 | STROETINGA Wim | 69 |
5 | WIPPERT Wouter | 75 |
6 | MULHERN Mitchell | 75 |
7 | PHELAN Adam | 73 |
8 | GROENEWEGEN Dylan | 70 |
10 | FLAKEMORE Campbell | 72 |
12 | ARIESEN Johim | 70 |
13 | ASSELMAN Jesper | 69 |
15 | VAN BAARLE Dylan | 78 |
16 | O'SHEA Glenn | 76 |
17 | ZABEL Rick | 81 |
18 | AVERY Clinton | 90 |
22 | ZEPUNTKE Ruben | 76 |
25 | DE VRIES Berden | 70 |
26 | GATE Aaron | 71 |
28 | TEUNISSEN Mike | 73 |
29 | VINGERLING Michael | 75 |