Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 50
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Vermeltfoort
2
85 kgWippert
3
75 kgAriesen
5
70 kgAvery
6
90 kgStroetinga
7
69 kgHowson
8
68 kgPhelan
10
73 kgMulhern
11
75 kgGroenewegen
12
70 kgvan Baarle
14
78 kgAsselman
15
69 kgFlakemore
16
72 kgTeunissen
18
73 kgZabel
20
81 kgO'Shea
21
76 kgChaigneau
25
80 kgde Vries
27
70 kgvan der Lijke
28
61 kgZepuntke
29
76 kgGate
32
71 kgVingerling
33
75 kgHollanders
34
70 kg
2
85 kgWippert
3
75 kgAriesen
5
70 kgAvery
6
90 kgStroetinga
7
69 kgHowson
8
68 kgPhelan
10
73 kgMulhern
11
75 kgGroenewegen
12
70 kgvan Baarle
14
78 kgAsselman
15
69 kgFlakemore
16
72 kgTeunissen
18
73 kgZabel
20
81 kgO'Shea
21
76 kgChaigneau
25
80 kgde Vries
27
70 kgvan der Lijke
28
61 kgZepuntke
29
76 kgGate
32
71 kgVingerling
33
75 kgHollanders
34
70 kg
Weight (KG) →
Result →
90
61
2
34
# | Rider | Weight (KG) |
---|---|---|
2 | VERMELTFOORT Coen | 85 |
3 | WIPPERT Wouter | 75 |
5 | ARIESEN Johim | 70 |
6 | AVERY Clinton | 90 |
7 | STROETINGA Wim | 69 |
8 | HOWSON Damien | 68 |
10 | PHELAN Adam | 73 |
11 | MULHERN Mitchell | 75 |
12 | GROENEWEGEN Dylan | 70 |
14 | VAN BAARLE Dylan | 78 |
15 | ASSELMAN Jesper | 69 |
16 | FLAKEMORE Campbell | 72 |
18 | TEUNISSEN Mike | 73 |
20 | ZABEL Rick | 81 |
21 | O'SHEA Glenn | 76 |
25 | CHAIGNEAU Robin | 80 |
27 | DE VRIES Berden | 70 |
28 | VAN DER LIJKE Nick | 61 |
29 | ZEPUNTKE Ruben | 76 |
32 | GATE Aaron | 71 |
33 | VINGERLING Michael | 75 |
34 | HOLLANDERS Dries | 70 |