Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 23
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Stroetinga
1
69 kgVermeltfoort
2
85 kgBohli
4
71 kgBol
6
71 kgSchoonbroodt
7
78 kgAriesen
8
70 kgWouters
9
75 kgVan Hooydonck
10
78 kgHavik
12
73 kgvan der Weijst
13
63 kgGerts
14
71 kgBakker
15
74.5 kgGodrie
16
74 kgTusveld
17
70 kgVereecken
19
72 kgBosman
20
68 kgMeijers
23
68 kgFrison
24
84 kgBudding
25
74 kgvan Zandbeek
26
72 kgMol
28
83 kgVermeulen
30
64 kg
1
69 kgVermeltfoort
2
85 kgBohli
4
71 kgBol
6
71 kgSchoonbroodt
7
78 kgAriesen
8
70 kgWouters
9
75 kgVan Hooydonck
10
78 kgHavik
12
73 kgvan der Weijst
13
63 kgGerts
14
71 kgBakker
15
74.5 kgGodrie
16
74 kgTusveld
17
70 kgVereecken
19
72 kgBosman
20
68 kgMeijers
23
68 kgFrison
24
84 kgBudding
25
74 kgvan Zandbeek
26
72 kgMol
28
83 kgVermeulen
30
64 kg
Weight (KG) →
Result →
85
63
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | STROETINGA Wim | 69 |
2 | VERMELTFOORT Coen | 85 |
4 | BOHLI Tom | 71 |
6 | BOL Jetse | 71 |
7 | SCHOONBROODT Bob | 78 |
8 | ARIESEN Johim | 70 |
9 | WOUTERS Enzo | 75 |
10 | VAN HOOYDONCK Nathan | 78 |
12 | HAVIK Piotr | 73 |
13 | VAN DER WEIJST Geert | 63 |
14 | GERTS Floris | 71 |
15 | BAKKER Dennis | 74.5 |
16 | GODRIE Stan | 74 |
17 | TUSVELD Martijn | 70 |
19 | VEREECKEN Nicolas | 72 |
20 | BOSMAN Gert-Jan | 68 |
23 | MEIJERS Jeroen | 68 |
24 | FRISON Frederik | 84 |
25 | BUDDING Martijn | 74 |
26 | VAN ZANDBEEK Ronan | 72 |
28 | MOL Wouter | 83 |
30 | VERMEULEN Emiel | 64 |