Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 82
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
Reinders
1
78.1 kgGibson
2
76 kgFredheim
3
72 kgZijlaard
4
73 kgBanaszek
5
75 kgde Vries
7
66 kgBrown
9
68 kgSchulting
10
70 kgWood
11
72 kgPerry
12
71 kgOttema
14
77 kgKopecký
15
73 kgSalby
16
68 kgvan Sintmaartensdijk
17
77 kgMihkels
18
75 kgDe Meester
19
73 kgLindeman
20
69 kgWood
22
67 kgHuppertz
26
66 kgStockman
29
67 kg
1
78.1 kgGibson
2
76 kgFredheim
3
72 kgZijlaard
4
73 kgBanaszek
5
75 kgde Vries
7
66 kgBrown
9
68 kgSchulting
10
70 kgWood
11
72 kgPerry
12
71 kgOttema
14
77 kgKopecký
15
73 kgSalby
16
68 kgvan Sintmaartensdijk
17
77 kgMihkels
18
75 kgDe Meester
19
73 kgLindeman
20
69 kgWood
22
67 kgHuppertz
26
66 kgStockman
29
67 kg
Weight (KG) →
Result →
78.1
66
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | REINDERS Elmar | 78.1 |
2 | GIBSON Matthew | 76 |
3 | FREDHEIM Stian | 72 |
4 | ZIJLAARD Maikel | 73 |
5 | BANASZEK Alan | 75 |
7 | DE VRIES Hartthijs | 66 |
9 | BROWN Jim | 68 |
10 | SCHULTING Peter | 70 |
11 | WOOD Oliver | 72 |
12 | PERRY Benjamin | 71 |
14 | OTTEMA Rick | 77 |
15 | KOPECKÝ Tomáš | 73 |
16 | SALBY Alexander | 68 |
17 | VAN SINTMAARTENSDIJK Roel | 77 |
18 | MIHKELS Madis | 75 |
19 | DE MEESTER Luca | 73 |
20 | LINDEMAN Bert-Jan | 69 |
22 | WOOD Reece | 67 |
26 | HUPPERTZ Joshua | 66 |
29 | STOCKMAN Abram | 67 |