Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 1
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Kroonen
1
79 kgVinjebo
3
67 kgBoven
4
62 kgVan Mechelen
6
78 kgOttema
7
77 kgRootkin-Gray
8
67 kgTanfield
9
80 kgDissel
10
77 kgBregnhøj
11
63 kgVermeltfoort
13
85 kgSlock
14
78 kgBudding
15
74 kgMarsman
16
75 kgde Jong
17
72 kgBroex
18
75 kgKopecký
19
73 kgHohmann
20
73 kg
1
79 kgVinjebo
3
67 kgBoven
4
62 kgVan Mechelen
6
78 kgOttema
7
77 kgRootkin-Gray
8
67 kgTanfield
9
80 kgDissel
10
77 kgBregnhøj
11
63 kgVermeltfoort
13
85 kgSlock
14
78 kgBudding
15
74 kgMarsman
16
75 kgde Jong
17
72 kgBroex
18
75 kgKopecký
19
73 kgHohmann
20
73 kg
Weight (KG) →
Result →
85
62
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | KROONEN Max | 79 |
3 | VINJEBO Emil Mielke | 67 |
4 | BOVEN Lars | 62 |
6 | VAN MECHELEN Vlad | 78 |
7 | OTTEMA Rick | 77 |
8 | ROOTKIN-GRAY Jack | 67 |
9 | TANFIELD Charlie | 80 |
10 | DISSEL Bram | 77 |
11 | BREGNHØJ Mathias | 63 |
13 | VERMELTFOORT Coen | 85 |
14 | SLOCK Liam | 78 |
15 | BUDDING Martijn | 74 |
16 | MARSMAN Tim | 75 |
17 | DE JONG Timo | 72 |
18 | BROEX Victor | 75 |
19 | KOPECKÝ Tomáš | 73 |
20 | HOHMANN Lars | 73 |