Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 8
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Boven
1
62 kgKroonen
2
79 kgKramer
3
74 kgVan Mechelen
4
78 kgVermeltfoort
5
85 kgBlikra
7
75 kgDissel
8
77 kgRootkin-Gray
9
67 kgSalby
10
68 kgVinjebo
11
67 kgBregnhøj
12
63 kgSlock
17
78 kgOttema
18
77 kgvan den Broek
19
70 kgTidball
20
70 kgLindeman
21
69 kgSimmons
22
68 kgHohmann
25
73 kgde Jong
26
72 kgBroex
27
75 kgKluge
28
83 kgKyffin
29
72 kgJochum
31
76 kg
1
62 kgKroonen
2
79 kgKramer
3
74 kgVan Mechelen
4
78 kgVermeltfoort
5
85 kgBlikra
7
75 kgDissel
8
77 kgRootkin-Gray
9
67 kgSalby
10
68 kgVinjebo
11
67 kgBregnhøj
12
63 kgSlock
17
78 kgOttema
18
77 kgvan den Broek
19
70 kgTidball
20
70 kgLindeman
21
69 kgSimmons
22
68 kgHohmann
25
73 kgde Jong
26
72 kgBroex
27
75 kgKluge
28
83 kgKyffin
29
72 kgJochum
31
76 kg
Weight (KG) →
Result →
85
62
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | BOVEN Lars | 62 |
2 | KROONEN Max | 79 |
3 | KRAMER Jesse | 74 |
4 | VAN MECHELEN Vlad | 78 |
5 | VERMELTFOORT Coen | 85 |
7 | BLIKRA Erlend | 75 |
8 | DISSEL Bram | 77 |
9 | ROOTKIN-GRAY Jack | 67 |
10 | SALBY Alexander | 68 |
11 | VINJEBO Emil Mielke | 67 |
12 | BREGNHØJ Mathias | 63 |
17 | SLOCK Liam | 78 |
18 | OTTEMA Rick | 77 |
19 | VAN DEN BROEK Frank | 70 |
20 | TIDBALL William | 70 |
21 | LINDEMAN Bert-Jan | 69 |
22 | SIMMONS Colby | 68 |
25 | HOHMANN Lars | 73 |
26 | DE JONG Timo | 72 |
27 | BROEX Victor | 75 |
28 | KLUGE Roger | 83 |
29 | KYFFIN Zeb | 72 |
31 | JOCHUM Ben Felix | 76 |