Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 5
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Abma
3
86 kgDehairs
4
82 kgVan de Wynkele
5
75 kgBomboi
6
72 kgNakken
7
72 kgSimmons
8
68 kgde Jong
9
72 kgMcdonald
13
65 kgOttema
15
77 kgDe Schuyteneer
16
74 kgVermeltfoort
18
85 kgWeulink
19
62 kgÅrnes
21
80 kgBrennan
22
68 kgStampe
23
79 kgSentjens
24
85 kgBehrens
26
80 kgRavnøy
29
78 kg
3
86 kgDehairs
4
82 kgVan de Wynkele
5
75 kgBomboi
6
72 kgNakken
7
72 kgSimmons
8
68 kgde Jong
9
72 kgMcdonald
13
65 kgOttema
15
77 kgDe Schuyteneer
16
74 kgVermeltfoort
18
85 kgWeulink
19
62 kgÅrnes
21
80 kgBrennan
22
68 kgStampe
23
79 kgSentjens
24
85 kgBehrens
26
80 kgRavnøy
29
78 kg
Weight (KG) →
Result →
86
62
3
29
# | Rider | Weight (KG) |
---|---|---|
3 | ABMA Elmar | 86 |
4 | DEHAIRS Simon | 82 |
5 | VAN DE WYNKELE Lorenz | 75 |
6 | BOMBOI Davide | 72 |
7 | NAKKEN Tobias Risan | 72 |
8 | SIMMONS Colby | 68 |
9 | DE JONG Timo | 72 |
13 | MCDONALD Brody | 65 |
15 | OTTEMA Rick | 77 |
16 | DE SCHUYTENEER Steffen | 74 |
18 | VERMELTFOORT Coen | 85 |
19 | WEULINK Meindert | 62 |
21 | ÅRNES Daniel | 80 |
22 | BRENNAN Matthew | 68 |
23 | STAMPE Daniel | 79 |
24 | SENTJENS Sente | 85 |
26 | BEHRENS Niklas | 80 |
29 | RAVNØY Johan | 78 |