Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 14
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Armstrong
1
58 kgZabelinskaya
2
52 kgvan der Breggen
3
56 kgvan Dijk
4
71 kgLongo Borghini
5
59 kgVillumsen
6
59 kgWhitten
7
67 kgBrennauer
8
63 kgGarfoot
9
56 kgStevens
10
55 kgAmialiusik
11
53 kgCanuel
13
51 kgYonamine
15
51 kgHenttala
17
58 kgPlichta
19
60 kgSolovey
20
56 kgKopecky
21
66 kgMajerus
22
56 kgDuyck
23
60 kgCordon-Ragot
24
60 kg
1
58 kgZabelinskaya
2
52 kgvan der Breggen
3
56 kgvan Dijk
4
71 kgLongo Borghini
5
59 kgVillumsen
6
59 kgWhitten
7
67 kgBrennauer
8
63 kgGarfoot
9
56 kgStevens
10
55 kgAmialiusik
11
53 kgCanuel
13
51 kgYonamine
15
51 kgHenttala
17
58 kgPlichta
19
60 kgSolovey
20
56 kgKopecky
21
66 kgMajerus
22
56 kgDuyck
23
60 kgCordon-Ragot
24
60 kg
Weight (KG) →
Result →
71
51
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | ARMSTRONG Kristin | 58 |
2 | ZABELINSKAYA Olga | 52 |
3 | VAN DER BREGGEN Anna | 56 |
4 | VAN DIJK Ellen | 71 |
5 | LONGO BORGHINI Elisa | 59 |
6 | VILLUMSEN Linda | 59 |
7 | WHITTEN Tara | 67 |
8 | BRENNAUER Lisa | 63 |
9 | GARFOOT Katrin | 56 |
10 | STEVENS Evelyn | 55 |
11 | AMIALIUSIK Alena | 53 |
13 | CANUEL Karol-Ann | 51 |
15 | YONAMINE Eri | 51 |
17 | HENTTALA Lotta | 58 |
19 | PLICHTA Anna | 60 |
20 | SOLOVEY Hanna | 56 |
21 | KOPECKY Lotte | 66 |
22 | MAJERUS Christine | 56 |
23 | DUYCK Ann-Sophie | 60 |
24 | CORDON-RAGOT Audrey | 60 |