Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 43
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Chiappa
2
60 kgHughes
3
72 kgHohlfeld
4
57 kgZabirova
6
65 kgCappellotto
7
60 kgHeeb
8
51 kgPurvis
11
52 kgStahurskaya
14
69 kgMarsal
16
53 kgMillward
17
56 kgKostøl Haug
18
51 kgPhillips
19
57 kgLjungskog
25
57 kgvan Rooy-Vink
28
57 kgGolay
29
65 kgPryde
31
57 kgBonanomi
32
60 kgVikstedt-Nyman
34
60 kgGreen
35
60 kgDunlap
37
56 kgClignet
38
60 kgGuo
41
62 kgAlexander
43
51 kg
2
60 kgHughes
3
72 kgHohlfeld
4
57 kgZabirova
6
65 kgCappellotto
7
60 kgHeeb
8
51 kgPurvis
11
52 kgStahurskaya
14
69 kgMarsal
16
53 kgMillward
17
56 kgKostøl Haug
18
51 kgPhillips
19
57 kgLjungskog
25
57 kgvan Rooy-Vink
28
57 kgGolay
29
65 kgPryde
31
57 kgBonanomi
32
60 kgVikstedt-Nyman
34
60 kgGreen
35
60 kgDunlap
37
56 kgClignet
38
60 kgGuo
41
62 kgAlexander
43
51 kg
Weight (KG) →
Result →
72
51
2
43
# | Rider | Weight (KG) |
---|---|---|
2 | CHIAPPA Imelda | 60 |
3 | HUGHES Clara | 72 |
4 | HOHLFELD Vera | 57 |
6 | ZABIROVA Zulfiya | 65 |
7 | CAPPELLOTTO Alessandra | 60 |
8 | HEEB Barbara | 51 |
11 | PURVIS Marie | 52 |
14 | STAHURSKAYA Zinaida | 69 |
16 | MARSAL Catherine | 53 |
17 | MILLWARD Anna | 56 |
18 | KOSTØL HAUG Ragnhild | 51 |
19 | PHILLIPS Sarah | 57 |
25 | LJUNGSKOG Susanne | 57 |
28 | VAN ROOY-VINK Elsbeth | 57 |
29 | GOLAY Jeanne | 65 |
31 | PRYDE Susy | 57 |
32 | BONANOMI Roberta | 60 |
34 | VIKSTEDT-NYMAN Tea | 60 |
35 | GREEN Erica | 60 |
37 | DUNLAP Alison | 56 |
38 | CLIGNET Marion | 60 |
41 | GUO Xinghong | 62 |
43 | ALEXANDER Caroline | 51 |