Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 24
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
van Leijen
11
73 kgRooijakkers
24
68 kgVerstraeten
31
65 kgWalgien
32
78 kgKlostergaard
33
69 kgDekkers
35
72 kgEichler
50
78 kgZonneveld
52
63 kgde Kort
55
69 kgElijzen
60
80 kgVan Lancker
67
67 kgvan Hummel
72
64 kgCordes
75
70 kgSchep
83
80 kgTerpstra
84
75 kgFlens
87
82 kg
11
73 kgRooijakkers
24
68 kgVerstraeten
31
65 kgWalgien
32
78 kgKlostergaard
33
69 kgDekkers
35
72 kgEichler
50
78 kgZonneveld
52
63 kgde Kort
55
69 kgElijzen
60
80 kgVan Lancker
67
67 kgvan Hummel
72
64 kgCordes
75
70 kgSchep
83
80 kgTerpstra
84
75 kgFlens
87
82 kg
Weight (KG) →
Result →
82
63
11
87
# | Rider | Weight (KG) |
---|---|---|
11 | VAN LEIJEN Joost | 73 |
24 | ROOIJAKKERS Piet | 68 |
31 | VERSTRAETEN Jan | 65 |
32 | WALGIEN Jorrit | 78 |
33 | KLOSTERGAARD Kasper | 69 |
35 | DEKKERS Hans | 72 |
50 | EICHLER Markus | 78 |
52 | ZONNEVELD Thijs | 63 |
55 | DE KORT Koen | 69 |
60 | ELIJZEN Michiel | 80 |
67 | VAN LANCKER Kurt | 67 |
72 | VAN HUMMEL Kenny | 64 |
75 | CORDES Tom | 70 |
83 | SCHEP Peter | 80 |
84 | TERPSTRA Niki | 75 |
87 | FLENS Rick | 82 |