Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Steels
1
78 kgJanssens
2
74 kgEefting-Bloem
3
75 kgDeclercq
8
78 kgGoos
9
65 kgvan Diermen
12
69 kgKreder
17
70 kgKreder
18
71 kgVingerling
22
75 kgAdams
35
63 kgVan Asbroeck
40
72 kgAsselman
50
69 kgVerhelst
53
71 kgLindeman
62
69 kgRosskopf
65
74 kgBroeckx
66
73 kgKoning
98
77 kgSleurs
107
68 kgSchmitz
128
77 kg
1
78 kgJanssens
2
74 kgEefting-Bloem
3
75 kgDeclercq
8
78 kgGoos
9
65 kgvan Diermen
12
69 kgKreder
17
70 kgKreder
18
71 kgVingerling
22
75 kgAdams
35
63 kgVan Asbroeck
40
72 kgAsselman
50
69 kgVerhelst
53
71 kgLindeman
62
69 kgRosskopf
65
74 kgBroeckx
66
73 kgKoning
98
77 kgSleurs
107
68 kgSchmitz
128
77 kg
Weight (KG) →
Result →
78
63
1
128
# | Rider | Weight (KG) |
---|---|---|
1 | STEELS Stijn | 78 |
2 | JANSSENS Jimmy | 74 |
3 | EEFTING-BLOEM Roy | 75 |
8 | DECLERCQ Tim | 78 |
9 | GOOS Marc | 65 |
12 | VAN DIERMEN Johnny | 69 |
17 | KREDER Raymond | 70 |
18 | KREDER Wesley | 71 |
22 | VINGERLING Michael | 75 |
35 | ADAMS Joeri | 63 |
40 | VAN ASBROECK Tom | 72 |
50 | ASSELMAN Jesper | 69 |
53 | VERHELST Louis | 71 |
62 | LINDEMAN Bert-Jan | 69 |
65 | ROSSKOPF Joey | 74 |
66 | BROECKX Stig | 73 |
98 | KONING Peter | 77 |
107 | SLEURS Christophe | 68 |
128 | SCHMITZ Bram | 77 |