Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 75
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Brown
3
65 kgvan Baarle
7
78 kgMannion
8
58 kgRathe
10
74 kgKrauwel
16
77 kgMannaerts
19
73 kgTheuns
20
72 kgBoswell
24
70 kgSegers
26
78 kgDevriendt
31
70 kgHavik
32
66 kgVan Aken
63
56 kgCraddock
97
69 kgVan Zummeren
121
73 kgVan Meirhaeghe
140
71 kgSeynaeve
154
67 kgDe Bondt
161
73 kg
3
65 kgvan Baarle
7
78 kgMannion
8
58 kgRathe
10
74 kgKrauwel
16
77 kgMannaerts
19
73 kgTheuns
20
72 kgBoswell
24
70 kgSegers
26
78 kgDevriendt
31
70 kgHavik
32
66 kgVan Aken
63
56 kgCraddock
97
69 kgVan Zummeren
121
73 kgVan Meirhaeghe
140
71 kgSeynaeve
154
67 kgDe Bondt
161
73 kg
Weight (KG) →
Result →
78
56
3
161
# | Rider | Weight (KG) |
---|---|---|
3 | BROWN Nathan | 65 |
7 | VAN BAARLE Dylan | 78 |
8 | MANNION Gavin | 58 |
10 | RATHE Jacob | 74 |
16 | KRAUWEL Bas | 77 |
19 | MANNAERTS Jelle | 73 |
20 | THEUNS Edward | 72 |
24 | BOSWELL Ian | 70 |
26 | SEGERS Joren | 78 |
31 | DEVRIENDT Tom | 70 |
32 | HAVIK Yoeri | 66 |
63 | VAN AKEN Matthias | 56 |
97 | CRADDOCK Lawson | 69 |
121 | VAN ZUMMEREN Stef | 73 |
140 | VAN MEIRHAEGHE Jef | 71 |
154 | SEYNAEVE Lander | 67 |
161 | DE BONDT Dries | 73 |