Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3 * weight + 252
This means that on average for every extra kilogram weight a rider loses -3 positions in the result.
Cornelisse
1
73.5 kgKrul
2
68 kgVan Hooydonck
3
78 kgWouters
4
75 kgPyfferoen
9
68 kgDe Decker
10
68 kgDe Vylder
13
70 kgvan den Berg
16
78 kgWallin
22
78 kgLooij
25
75 kgWijkel
27
73 kgRüegg
34
66 kgWeinzheimer
41
67 kgNobus
48
79 kgLisson
78
73 kgKongstad
79
75 kgLyhne
94
61 kgDe Poorter
99
68 kgSchultz
111
60 kg
1
73.5 kgKrul
2
68 kgVan Hooydonck
3
78 kgWouters
4
75 kgPyfferoen
9
68 kgDe Decker
10
68 kgDe Vylder
13
70 kgvan den Berg
16
78 kgWallin
22
78 kgLooij
25
75 kgWijkel
27
73 kgRüegg
34
66 kgWeinzheimer
41
67 kgNobus
48
79 kgLisson
78
73 kgKongstad
79
75 kgLyhne
94
61 kgDe Poorter
99
68 kgSchultz
111
60 kg
Weight (KG) →
Result →
79
60
1
111
# | Rider | Weight (KG) |
---|---|---|
1 | CORNELISSE Mitchell | 73.5 |
2 | KRUL Stef | 68 |
3 | VAN HOOYDONCK Nathan | 78 |
4 | WOUTERS Enzo | 75 |
9 | PYFFEROEN Matthias | 68 |
10 | DE DECKER Alfdan | 68 |
13 | DE VYLDER Lindsay | 70 |
16 | VAN DEN BERG Julius | 78 |
22 | WALLIN Rasmus Bøgh | 78 |
25 | LOOIJ André | 75 |
27 | WIJKEL Stan | 73 |
34 | RÜEGG Lukas | 66 |
41 | WEINZHEIMER Richard | 67 |
48 | NOBUS Kevin | 79 |
78 | LISSON Christoffer | 73 |
79 | KONGSTAD Tobias | 75 |
94 | LYHNE Daniel | 61 |
99 | DE POORTER Maxime | 68 |
111 | SCHULTZ Jesper | 60 |