Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 135
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Cornelisse
2
73.5 kgHernandez
3
74 kgIversen
5
77 kgSchultz
9
60 kgWouters
13
75 kgDe Poorter
14
68 kgGranigan
15
76 kgEinhorn
19
72 kgvan den Berg
20
78 kgVeltman
30
66 kgBouts
38
62 kgBreugelmans
45
71 kgDe Decker
64
68 kgWolffenbuttel
69
79 kgWillems
85
67 kgTasset
87
63 kg
2
73.5 kgHernandez
3
74 kgIversen
5
77 kgSchultz
9
60 kgWouters
13
75 kgDe Poorter
14
68 kgGranigan
15
76 kgEinhorn
19
72 kgvan den Berg
20
78 kgVeltman
30
66 kgBouts
38
62 kgBreugelmans
45
71 kgDe Decker
64
68 kgWolffenbuttel
69
79 kgWillems
85
67 kgTasset
87
63 kg
Weight (KG) →
Result →
79
60
2
87
# | Rider | Weight (KG) |
---|---|---|
2 | CORNELISSE Mitchell | 73.5 |
3 | HERNANDEZ Michael | 74 |
5 | IVERSEN Rasmus Byriel | 77 |
9 | SCHULTZ Jesper | 60 |
13 | WOUTERS Enzo | 75 |
14 | DE POORTER Maxime | 68 |
15 | GRANIGAN Noah | 76 |
19 | EINHORN Itamar | 72 |
20 | VAN DEN BERG Julius | 78 |
30 | VELTMAN Milan | 66 |
38 | BOUTS Jordy | 62 |
45 | BREUGELMANS Michiel | 71 |
64 | DE DECKER Alfdan | 68 |
69 | WOLFFENBUTTEL Nils | 79 |
85 | WILLEMS Thimo | 67 |
87 | TASSET Marvin | 63 |