Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 31
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Van Grieken
1
71 kgDe Decker
2
73 kgVan Dyck
8
64 kgVan Der Hoeven
9
80 kgLahav
11
59 kgHohmann
14
73 kgKogut
15
77 kgClaeys
20
68.5 kgSteininger
25
64 kgGonzalez Torres
38
65 kgClaeys
40
75 kgBrabander
43
80 kgVan de Wynkele
53
75 kgRiegler
58
65 kgVan Den Bergh
68
68 kg
1
71 kgDe Decker
2
73 kgVan Dyck
8
64 kgVan Der Hoeven
9
80 kgLahav
11
59 kgHohmann
14
73 kgKogut
15
77 kgClaeys
20
68.5 kgSteininger
25
64 kgGonzalez Torres
38
65 kgClaeys
40
75 kgBrabander
43
80 kgVan de Wynkele
53
75 kgRiegler
58
65 kgVan Den Bergh
68
68 kg
Weight (KG) →
Result →
80
59
1
68
# | Rider | Weight (KG) |
---|---|---|
1 | VAN GRIEKEN Jarne | 71 |
2 | DE DECKER Tijl | 73 |
8 | VAN DYCK Ward | 64 |
9 | VAN DER HOEVEN Luc | 80 |
11 | LAHAV Omer | 59 |
14 | HOHMANN Lars | 73 |
15 | KOGUT Oded | 77 |
20 | CLAEYS Robbe | 68.5 |
25 | STEININGER Fabian | 64 |
38 | GONZALEZ TORRES Mateo | 65 |
40 | CLAEYS Laurent | 75 |
43 | BRABANDER Nick | 80 |
53 | VAN DE WYNKELE Lorenz | 75 |
58 | RIEGLER Nikolas | 65 |
68 | VAN DEN BERGH Stan | 68 |