Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 110
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Kooij
6
72 kgPollefliet
7
74 kgDhaeye
12
71 kgRasenberg
16
78 kgVan Den Bergh
17
68 kgde Rijk
18
73 kgMiny
21
62 kgErringsø
23
67 kgSchomburg
29
76 kgvan Schipstal
49
66 kgWilk
66
72 kgStevens
67
72 kgLuijten
72
79 kgBurghardt
77
63 kgVan Roosbroeck
85
60 kgVan Der Hoeven
98
80 kgJacobs
104
64 kgStuiver
109
70 kg
6
72 kgPollefliet
7
74 kgDhaeye
12
71 kgRasenberg
16
78 kgVan Den Bergh
17
68 kgde Rijk
18
73 kgMiny
21
62 kgErringsø
23
67 kgSchomburg
29
76 kgvan Schipstal
49
66 kgWilk
66
72 kgStevens
67
72 kgLuijten
72
79 kgBurghardt
77
63 kgVan Roosbroeck
85
60 kgVan Der Hoeven
98
80 kgJacobs
104
64 kgStuiver
109
70 kg
Weight (KG) →
Result →
80
60
6
109
# | Rider | Weight (KG) |
---|---|---|
6 | KOOIJ Olav | 72 |
7 | POLLEFLIET Gianluca | 74 |
12 | DHAEYE Enrico | 71 |
16 | RASENBERG Martijn | 78 |
17 | VAN DEN BERGH Stan | 68 |
18 | DE RIJK Sim | 73 |
21 | MINY Gilles | 62 |
23 | ERRINGSØ Frederik | 67 |
29 | SCHOMBURG Marten | 76 |
49 | VAN SCHIPSTAL Guus | 66 |
66 | WILK Luke | 72 |
67 | STEVENS Daan | 72 |
72 | LUIJTEN Noel | 79 |
77 | BURGHARDT Luis | 63 |
85 | VAN ROOSBROECK Jan | 60 |
98 | VAN DER HOEVEN Luc | 80 |
104 | JACOBS Tuur | 64 |
109 | STUIVER Ard | 70 |