Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 39
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Vandenbergh
1
86 kgRenders
2
63 kgDuclos-Lassalle
8
63 kgVantornout
9
69 kgIngels
16
70 kgBlackgrove
19
65 kgWeylandt
20
72 kgde Wilde
22
74 kgHabeaux
23
68 kgCornu
32
78 kgSteurs
41
77 kgLemoine
45
73 kgFarrar
50
73 kgKaisen
67
82 kgDe Fauw
84
77 kgPauwels
85
65 kgFukushima
95
62 kg
1
86 kgRenders
2
63 kgDuclos-Lassalle
8
63 kgVantornout
9
69 kgIngels
16
70 kgBlackgrove
19
65 kgWeylandt
20
72 kgde Wilde
22
74 kgHabeaux
23
68 kgCornu
32
78 kgSteurs
41
77 kgLemoine
45
73 kgFarrar
50
73 kgKaisen
67
82 kgDe Fauw
84
77 kgPauwels
85
65 kgFukushima
95
62 kg
Weight (KG) →
Result →
86
62
1
95
# | Rider | Weight (KG) |
---|---|---|
1 | VANDENBERGH Stijn | 86 |
2 | RENDERS Sven | 63 |
8 | DUCLOS-LASSALLE Hervé | 63 |
9 | VANTORNOUT Klaas | 69 |
16 | INGELS Nick | 70 |
19 | BLACKGROVE Heath | 65 |
20 | WEYLANDT Wouter | 72 |
22 | DE WILDE Sjef | 74 |
23 | HABEAUX Grégory | 68 |
32 | CORNU Dominique | 78 |
41 | STEURS Geert | 77 |
45 | LEMOINE Cyril | 73 |
50 | FARRAR Tyler | 73 |
67 | KAISEN Olivier | 82 |
84 | DE FAUW Dimitri | 77 |
85 | PAUWELS Serge | 65 |
95 | FUKUSHIMA Shinichi | 62 |