Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 97
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Schoonbroodt
1
78 kgBester
8
67 kgCoenen
10
69 kgHavik
12
66 kgTeunissen
13
73 kgRiesebeek
15
78 kgDevriendt
22
70 kgLampaert
30
75 kgSegers
32
78 kgVan Lerberghe
55
83 kgDe Tier
73
60 kgMeintjes
76
58 kgDe Clercq
81
67 kgScheire
84
61 kgPeelaers
89
75 kgVandenbogaerde
91
77 kgMcLay
94
72 kgReinders
102
78.1 kg
1
78 kgBester
8
67 kgCoenen
10
69 kgHavik
12
66 kgTeunissen
13
73 kgRiesebeek
15
78 kgDevriendt
22
70 kgLampaert
30
75 kgSegers
32
78 kgVan Lerberghe
55
83 kgDe Tier
73
60 kgMeintjes
76
58 kgDe Clercq
81
67 kgScheire
84
61 kgPeelaers
89
75 kgVandenbogaerde
91
77 kgMcLay
94
72 kgReinders
102
78.1 kg
Weight (KG) →
Result →
83
58
1
102
# | Rider | Weight (KG) |
---|---|---|
1 | SCHOONBROODT Bob | 78 |
8 | BESTER Shaun-Nick | 67 |
10 | COENEN Dennis | 69 |
12 | HAVIK Yoeri | 66 |
13 | TEUNISSEN Mike | 73 |
15 | RIESEBEEK Oscar | 78 |
22 | DEVRIENDT Tom | 70 |
30 | LAMPAERT Yves | 75 |
32 | SEGERS Joren | 78 |
55 | VAN LERBERGHE Bert | 83 |
73 | DE TIER Floris | 60 |
76 | MEINTJES Louis | 58 |
81 | DE CLERCQ Angelo | 67 |
84 | SCHEIRE Ruben | 61 |
89 | PEELAERS Jeff | 75 |
91 | VANDENBOGAERDE Jens | 77 |
94 | MCLAY Daniel | 72 |
102 | REINDERS Elmar | 78.1 |