Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 73
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Johansson
1
58 kgDe Vocht
2
61 kgMelchers
7
59 kgGunnewijk
8
67 kgSlappendel
10
67 kgDruyts
13
62 kgMartin
17
57 kgLast
24
60 kgvan den Broek-Blaak
25
64 kgHenrion
27
60 kgBeveridge
30
55 kgJeuland-Tranchant
35
61 kgD'hoore
36
63 kgBrand
41
57 kgde Vries
44
62 kgHannes
53
51 kgValsecchi
58
58 kgCorneo
59
54 kgWild
61
75 kgTrott
63
56 kgFournier
73
60 kg
1
58 kgDe Vocht
2
61 kgMelchers
7
59 kgGunnewijk
8
67 kgSlappendel
10
67 kgDruyts
13
62 kgMartin
17
57 kgLast
24
60 kgvan den Broek-Blaak
25
64 kgHenrion
27
60 kgBeveridge
30
55 kgJeuland-Tranchant
35
61 kgD'hoore
36
63 kgBrand
41
57 kgde Vries
44
62 kgHannes
53
51 kgValsecchi
58
58 kgCorneo
59
54 kgWild
61
75 kgTrott
63
56 kgFournier
73
60 kg
Weight (KG) →
Result →
75
51
1
73
# | Rider | Weight (KG) |
---|---|---|
1 | JOHANSSON Emma | 58 |
2 | DE VOCHT Liesbet | 61 |
7 | MELCHERS Mirjam | 59 |
8 | GUNNEWIJK Loes | 67 |
10 | SLAPPENDEL Iris | 67 |
13 | DRUYTS Kelly | 62 |
17 | MARTIN Lucy | 57 |
24 | LAST Annie | 60 |
25 | VAN DEN BROEK-BLAAK Chantal | 64 |
27 | HENRION Ludivine | 60 |
30 | BEVERIDGE Julie | 55 |
35 | JEULAND-TRANCHANT Pascale | 61 |
36 | D'HOORE Jolien | 63 |
41 | BRAND Lucinda | 57 |
44 | DE VRIES Marijn | 62 |
53 | HANNES Kaat | 51 |
58 | VALSECCHI Silvia | 58 |
59 | CORNEO Sigrid | 54 |
61 | WILD Kirsten | 75 |
63 | TROTT Laura | 56 |
73 | FOURNIER Roxane | 60 |