Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.1 * weight + 181
This means that on average for every extra kilogram weight a rider loses -2.1 positions in the result.
Sercu
2
76 kgDe Vlaeminck
4
74 kgMerckx
6
74 kgDierickx
7
74 kgRaas
8
72 kgDemeyer
9
85 kgSchuiten
12
83 kgMaertens
14
65 kgGodefroot
17
73 kgMourioux
36
71 kgKarstens
38
74 kgGilson
41
70 kgGaida
42
65 kgLloyd
56
76 kgSwerts
65
75 kgPollentier
68
62 kgMortensen
69
70 kgVan Impe
70
59 kg
2
76 kgDe Vlaeminck
4
74 kgMerckx
6
74 kgDierickx
7
74 kgRaas
8
72 kgDemeyer
9
85 kgSchuiten
12
83 kgMaertens
14
65 kgGodefroot
17
73 kgMourioux
36
71 kgKarstens
38
74 kgGilson
41
70 kgGaida
42
65 kgLloyd
56
76 kgSwerts
65
75 kgPollentier
68
62 kgMortensen
69
70 kgVan Impe
70
59 kg
Weight (KG) →
Result →
85
59
2
70
# | Rider | Weight (KG) |
---|---|---|
2 | SERCU Patrick | 76 |
4 | DE VLAEMINCK Roger | 74 |
6 | MERCKX Eddy | 74 |
7 | DIERICKX André | 74 |
8 | RAAS Jan | 72 |
9 | DEMEYER Marc | 85 |
12 | SCHUITEN Roy | 83 |
14 | MAERTENS Freddy | 65 |
17 | GODEFROOT Walter | 73 |
36 | MOURIOUX Jacques | 71 |
38 | KARSTENS Gerben | 74 |
41 | GILSON Roger | 70 |
42 | GAIDA Alfred | 65 |
56 | LLOYD Dave | 76 |
65 | SWERTS Roger | 75 |
68 | POLLENTIER Michel | 62 |
69 | MORTENSEN Leif | 70 |
70 | VAN IMPE Lucien | 59 |