Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 53
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
De Wolf
1
75 kgRaas
2
72 kgDe Wilde
5
70 kgvan der Poel
7
70 kgHoste
13
76 kgVanderaerden
14
74 kgvan Vliet
15
65 kgMadiot
18
68 kgPlanckaert
23
69 kgSergeant
39
76 kgKelly
40
77 kgRoche
50
74 kgWampers
53
82 kgDuclos-Lassalle
56
73 kgZoetemelk
57
68 kgSchepers
62
60 kgPollentier
66
62 kgvan den Hoek
72
77 kg
1
75 kgRaas
2
72 kgDe Wilde
5
70 kgvan der Poel
7
70 kgHoste
13
76 kgVanderaerden
14
74 kgvan Vliet
15
65 kgMadiot
18
68 kgPlanckaert
23
69 kgSergeant
39
76 kgKelly
40
77 kgRoche
50
74 kgWampers
53
82 kgDuclos-Lassalle
56
73 kgZoetemelk
57
68 kgSchepers
62
60 kgPollentier
66
62 kgvan den Hoek
72
77 kg
Weight (KG) →
Result →
82
60
1
72
# | Rider | Weight (KG) |
---|---|---|
1 | DE WOLF Fons | 75 |
2 | RAAS Jan | 72 |
5 | DE WILDE Etienne | 70 |
7 | VAN DER POEL Adrie | 70 |
13 | HOSTE Frank | 76 |
14 | VANDERAERDEN Eric | 74 |
15 | VAN VLIET Leo | 65 |
18 | MADIOT Marc | 68 |
23 | PLANCKAERT Eddy | 69 |
39 | SERGEANT Marc | 76 |
40 | KELLY Sean | 77 |
50 | ROCHE Stephen | 74 |
53 | WAMPERS Jean-Marie | 82 |
56 | DUCLOS-LASSALLE Gilbert | 73 |
57 | ZOETEMELK Joop | 68 |
62 | SCHEPERS Eddy | 60 |
66 | POLLENTIER Michel | 62 |
72 | VAN DEN HOEK Aad | 77 |