Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 32
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
De Wilde
1
70 kgKelly
2
77 kgVanderaerden
5
74 kgBauer
7
72 kgPlanckaert
15
69 kgLeMond
17
67 kgGianetti
20
62 kgStephens
23
65 kgArntz
35
70 kgHoste
43
76 kgPeeters
46
76 kgHolm Sørensen
47
77 kgSkibby
55
70 kgBomans
57
74 kgNijdam
59
70 kgvan der Poel
69
70 kgSolleveld
76
93 kgRiis
96
71 kgMurguialday
105
58 kg
1
70 kgKelly
2
77 kgVanderaerden
5
74 kgBauer
7
72 kgPlanckaert
15
69 kgLeMond
17
67 kgGianetti
20
62 kgStephens
23
65 kgArntz
35
70 kgHoste
43
76 kgPeeters
46
76 kgHolm Sørensen
47
77 kgSkibby
55
70 kgBomans
57
74 kgNijdam
59
70 kgvan der Poel
69
70 kgSolleveld
76
93 kgRiis
96
71 kgMurguialday
105
58 kg
Weight (KG) →
Result →
93
58
1
105
# | Rider | Weight (KG) |
---|---|---|
1 | DE WILDE Etienne | 70 |
2 | KELLY Sean | 77 |
5 | VANDERAERDEN Eric | 74 |
7 | BAUER Steve | 72 |
15 | PLANCKAERT Eddy | 69 |
17 | LEMOND Greg | 67 |
20 | GIANETTI Mauro | 62 |
23 | STEPHENS Neil | 65 |
35 | ARNTZ Marcel | 70 |
43 | HOSTE Frank | 76 |
46 | PEETERS Wilfried | 76 |
47 | HOLM SØRENSEN Brian | 77 |
55 | SKIBBY Jesper | 70 |
57 | BOMANS Carlo | 74 |
59 | NIJDAM Jelle | 70 |
69 | VAN DER POEL Adrie | 70 |
76 | SOLLEVELD Gerrit | 93 |
96 | RIIS Bjarne | 71 |
105 | MURGUIALDAY Javier | 58 |