Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 85
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Van Meirhaeghe
1
71 kgMyngheer
4
74 kgVan Lerberghe
6
83 kgVermeulen
11
64 kgStuyven
14
78 kgOttema
15
77 kgKragh Andersen
17
72 kgvan der Poel
18
75 kgMaes
26
72 kgSweeck
31
71 kgTeuns
35
64 kgKüng
36
83 kgFrison
37
84 kgEyskens
40
68 kgSeynaeve
50
67 kgWallays
51
64 kgSlik
53
71 kgDegreve
59
72 kg
1
71 kgMyngheer
4
74 kgVan Lerberghe
6
83 kgVermeulen
11
64 kgStuyven
14
78 kgOttema
15
77 kgKragh Andersen
17
72 kgvan der Poel
18
75 kgMaes
26
72 kgSweeck
31
71 kgTeuns
35
64 kgKüng
36
83 kgFrison
37
84 kgEyskens
40
68 kgSeynaeve
50
67 kgWallays
51
64 kgSlik
53
71 kgDegreve
59
72 kg
Weight (KG) →
Result →
84
64
1
59
# | Rider | Weight (KG) |
---|---|---|
1 | VAN MEIRHAEGHE Jef | 71 |
4 | MYNGHEER Daan | 74 |
6 | VAN LERBERGHE Bert | 83 |
11 | VERMEULEN Emiel | 64 |
14 | STUYVEN Jasper | 78 |
15 | OTTEMA Rick | 77 |
17 | KRAGH ANDERSEN Asbjørn | 72 |
18 | VAN DER POEL David | 75 |
26 | MAES Alexander | 72 |
31 | SWEECK Diether | 71 |
35 | TEUNS Dylan | 64 |
36 | KÜNG Stefan | 83 |
37 | FRISON Frederik | 84 |
40 | EYSKENS Jeroen | 68 |
50 | SEYNAEVE Lander | 67 |
51 | WALLAYS Jens | 64 |
53 | SLIK Ivar | 71 |
59 | DEGREVE Martijn | 72 |