Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 109
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Myngheer
1
74 kgSénéchal
2
77 kgDegreve
4
72 kgVermeulen
5
64 kgDeclercq
7
67 kgFarazijn
9
73.5 kgHavik
10
73 kgVerschuere
12
75 kgBoons
13
85 kgDeltombe
16
66 kgSpengler
21
78 kgKowalski
27
67 kgWillems
28
72 kgSweeck
31
71 kgPouilly
44
66 kgLeroux
53
79 kgDe Witte
68
61 kgVermeulen
69
66 kgWilliams
70
73 kg
1
74 kgSénéchal
2
77 kgDegreve
4
72 kgVermeulen
5
64 kgDeclercq
7
67 kgFarazijn
9
73.5 kgHavik
10
73 kgVerschuere
12
75 kgBoons
13
85 kgDeltombe
16
66 kgSpengler
21
78 kgKowalski
27
67 kgWillems
28
72 kgSweeck
31
71 kgPouilly
44
66 kgLeroux
53
79 kgDe Witte
68
61 kgVermeulen
69
66 kgWilliams
70
73 kg
Weight (KG) →
Result →
85
61
1
70
# | Rider | Weight (KG) |
---|---|---|
1 | MYNGHEER Daan | 74 |
2 | SÉNÉCHAL Florian | 77 |
4 | DEGREVE Martijn | 72 |
5 | VERMEULEN Emiel | 64 |
7 | DECLERCQ Benjamin | 67 |
9 | FARAZIJN Maxime | 73.5 |
10 | HAVIK Piotr | 73 |
12 | VERSCHUERE Seppe | 75 |
13 | BOONS Ruben | 85 |
16 | DELTOMBE Kevin | 66 |
21 | SPENGLER Lukas | 78 |
27 | KOWALSKI Dylan | 67 |
28 | WILLEMS Kenny | 72 |
31 | SWEECK Diether | 71 |
44 | POUILLY Félix | 66 |
53 | LEROUX Samuel | 79 |
68 | DE WITTE Mathias | 61 |
69 | VERMEULEN Alexey | 66 |
70 | WILLIAMS Tyler | 73 |