Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 27
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Wild
1
75 kgBecker
2
64 kgVos
3
58 kgDeignan
4
57 kgMustonen
5
58 kgPieters
7
58 kgKoedooder
8
69 kgSlappendel
9
67 kgBrand
11
57 kgGunnewijk
12
67 kgMartin
15
57 kgMoberg
17
56 kgLaws
20
54 kgVisser
21
59 kgKirchmann
23
59 kgKessler
33
60 kgBates
59
69 kgFahlin
62
63 kgNumainville
67
65 kgVillumsen
70
59 kgKitchen
71
60 kgBurchenkova
72
67 kgAntoshina
79
55 kg
1
75 kgBecker
2
64 kgVos
3
58 kgDeignan
4
57 kgMustonen
5
58 kgPieters
7
58 kgKoedooder
8
69 kgSlappendel
9
67 kgBrand
11
57 kgGunnewijk
12
67 kgMartin
15
57 kgMoberg
17
56 kgLaws
20
54 kgVisser
21
59 kgKirchmann
23
59 kgKessler
33
60 kgBates
59
69 kgFahlin
62
63 kgNumainville
67
65 kgVillumsen
70
59 kgKitchen
71
60 kgBurchenkova
72
67 kgAntoshina
79
55 kg
Weight (KG) →
Result →
75
54
1
79
# | Rider | Weight (KG) |
---|---|---|
1 | WILD Kirsten | 75 |
2 | BECKER Charlotte | 64 |
3 | VOS Marianne | 58 |
4 | DEIGNAN Elizabeth | 57 |
5 | MUSTONEN Sara | 58 |
7 | PIETERS Amy | 58 |
8 | KOEDOODER Vera | 69 |
9 | SLAPPENDEL Iris | 67 |
11 | BRAND Lucinda | 57 |
12 | GUNNEWIJK Loes | 67 |
15 | MARTIN Lucy | 57 |
17 | MOBERG Emilie | 56 |
20 | LAWS Sharon | 54 |
21 | VISSER Adrie | 59 |
23 | KIRCHMANN Leah | 59 |
33 | KESSLER Nina | 60 |
59 | BATES Katherine | 69 |
62 | FAHLIN Emilia | 63 |
67 | NUMAINVILLE Joëlle | 65 |
70 | VILLUMSEN Linda | 59 |
71 | KITCHEN Lauren | 60 |
72 | BURCHENKOVA Alexandra | 67 |
79 | ANTOSHINA Tatiana | 55 |