Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 53
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Gajek
1
74 kgEeckhout
2
73 kgHondo
3
73 kgAmorison
4
70 kgFlens
5
82 kgRooijakkers
6
68 kgGardeyn
7
75 kgLeezer
10
76 kgWillems
11
67 kgCaethoven
12
67 kgVerbist
13
73 kgLjungblad
14
70 kgDe Schrooder
15
61 kgDe Waele
18
71 kgRoesems
20
81 kgThijs
24
69 kgBuffaz
25
64 kgStubbe
27
66 kg
1
74 kgEeckhout
2
73 kgHondo
3
73 kgAmorison
4
70 kgFlens
5
82 kgRooijakkers
6
68 kgGardeyn
7
75 kgLeezer
10
76 kgWillems
11
67 kgCaethoven
12
67 kgVerbist
13
73 kgLjungblad
14
70 kgDe Schrooder
15
61 kgDe Waele
18
71 kgRoesems
20
81 kgThijs
24
69 kgBuffaz
25
64 kgStubbe
27
66 kg
Weight (KG) →
Result →
82
61
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | GAJEK Artur | 74 |
2 | EECKHOUT Niko | 73 |
3 | HONDO Danilo | 73 |
4 | AMORISON Frédéric | 70 |
5 | FLENS Rick | 82 |
6 | ROOIJAKKERS Piet | 68 |
7 | GARDEYN Gorik | 75 |
10 | LEEZER Tom | 76 |
11 | WILLEMS Frederik | 67 |
12 | CAETHOVEN Steven | 67 |
13 | VERBIST Evert | 73 |
14 | LJUNGBLAD Jonas | 70 |
15 | DE SCHROODER Benny | 61 |
18 | DE WAELE Bert | 71 |
20 | ROESEMS Bert | 81 |
24 | THIJS Erwin | 69 |
25 | BUFFAZ Mickaël | 64 |
27 | STUBBE Tom | 66 |