Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 47
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
de Jongh
1
76 kgCooke
2
75 kgEeckhout
3
73 kgvan Dijk
4
74 kgFriedemann
5
75 kgMol
6
83 kgGardeyn
7
75 kgBoucher
8
78 kgTjallingii
9
81 kgVermeltfoort
10
85 kgForke
12
78 kgVeelers
14
75 kgBellemakers
15
75 kgCretskens
16
75 kgPronk
17
73 kgVanheule
18
76 kgIngels
19
70 kgFlahaut
21
66 kgJanorschke
22
78 kg
1
76 kgCooke
2
75 kgEeckhout
3
73 kgvan Dijk
4
74 kgFriedemann
5
75 kgMol
6
83 kgGardeyn
7
75 kgBoucher
8
78 kgTjallingii
9
81 kgVermeltfoort
10
85 kgForke
12
78 kgVeelers
14
75 kgBellemakers
15
75 kgCretskens
16
75 kgPronk
17
73 kgVanheule
18
76 kgIngels
19
70 kgFlahaut
21
66 kgJanorschke
22
78 kg
Weight (KG) →
Result →
85
66
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | DE JONGH Steven | 76 |
2 | COOKE Baden | 75 |
3 | EECKHOUT Niko | 73 |
4 | VAN DIJK Stefan | 74 |
5 | FRIEDEMANN Matthias | 75 |
6 | MOL Wouter | 83 |
7 | GARDEYN Gorik | 75 |
8 | BOUCHER David | 78 |
9 | TJALLINGII Maarten | 81 |
10 | VERMELTFOORT Coen | 85 |
12 | FORKE Sebastian | 78 |
14 | VEELERS Tom | 75 |
15 | BELLEMAKERS Dirk | 75 |
16 | CRETSKENS Wilfried | 75 |
17 | PRONK Matthé | 73 |
18 | VANHEULE Bart | 76 |
19 | INGELS Nick | 70 |
21 | FLAHAUT Denis | 66 |
22 | JANORSCHKE Grischa | 78 |