Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Dekkers
5
72 kgDe Fauw
6
77 kgde Wilde
13
74 kgSteurs
22
77 kgVanlandschoot
25
67 kgVerstraeten
26
65 kgKnees
33
81 kgCurvers
36
73 kgScheirlinckx
48
67 kgAbakoumov
50
68 kgCappelle
51
71 kgHonig
54
61 kgElijzen
56
80 kgDe Groote
59
71 kgMouris
60
91 kgHeijboer
74
78 kgScheuneman
75
75 kgDe Neef
77
75 kgRosseler
78
78 kg
5
72 kgDe Fauw
6
77 kgde Wilde
13
74 kgSteurs
22
77 kgVanlandschoot
25
67 kgVerstraeten
26
65 kgKnees
33
81 kgCurvers
36
73 kgScheirlinckx
48
67 kgAbakoumov
50
68 kgCappelle
51
71 kgHonig
54
61 kgElijzen
56
80 kgDe Groote
59
71 kgMouris
60
91 kgHeijboer
74
78 kgScheuneman
75
75 kgDe Neef
77
75 kgRosseler
78
78 kg
Weight (KG) →
Result →
91
61
5
78
| # | Rider | Weight (KG) |
|---|---|---|
| 5 | DEKKERS Hans | 72 |
| 6 | DE FAUW Dimitri | 77 |
| 13 | DE WILDE Sjef | 74 |
| 22 | STEURS Geert | 77 |
| 25 | VANLANDSCHOOT James | 67 |
| 26 | VERSTRAETEN Jan | 65 |
| 33 | KNEES Christian | 81 |
| 36 | CURVERS Roy | 73 |
| 48 | SCHEIRLINCKX Bert | 67 |
| 50 | ABAKOUMOV Igor | 68 |
| 51 | CAPPELLE Andy | 71 |
| 54 | HONIG Reinier | 61 |
| 56 | ELIJZEN Michiel | 80 |
| 59 | DE GROOTE Thierry | 71 |
| 60 | MOURIS Jens | 91 |
| 74 | HEIJBOER Mathieu | 78 |
| 75 | SCHEUNEMAN Niels | 75 |
| 77 | DE NEEF Steven | 75 |
| 78 | ROSSELER Sébastien | 78 |