Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 81
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Eeckhout
1
73 kgBarbé
2
75 kgEichler
3
78 kgBoucher
4
78 kgvan Emden
5
78 kgSørensen
7
64 kgHabeaux
8
68 kgvan Leijen
12
73 kgFlahaut
13
66 kgDe Fauw
14
77 kgVeelers
19
75 kgVanlandschoot
20
67 kgNeirynck
21
71 kgSulzberger
30
67 kgde Baat
32
66 kgDmitriyev
45
69 kgSaramotins
49
75 kg
1
73 kgBarbé
2
75 kgEichler
3
78 kgBoucher
4
78 kgvan Emden
5
78 kgSørensen
7
64 kgHabeaux
8
68 kgvan Leijen
12
73 kgFlahaut
13
66 kgDe Fauw
14
77 kgVeelers
19
75 kgVanlandschoot
20
67 kgNeirynck
21
71 kgSulzberger
30
67 kgde Baat
32
66 kgDmitriyev
45
69 kgSaramotins
49
75 kg
Weight (KG) →
Result →
78
64
1
49
# | Rider | Weight (KG) |
---|---|---|
1 | EECKHOUT Niko | 73 |
2 | BARBÉ Koen | 75 |
3 | EICHLER Markus | 78 |
4 | BOUCHER David | 78 |
5 | VAN EMDEN Jos | 78 |
7 | SØRENSEN Chris Anker | 64 |
8 | HABEAUX Grégory | 68 |
12 | VAN LEIJEN Joost | 73 |
13 | FLAHAUT Denis | 66 |
14 | DE FAUW Dimitri | 77 |
19 | VEELERS Tom | 75 |
20 | VANLANDSCHOOT James | 67 |
21 | NEIRYNCK Kevin | 71 |
30 | SULZBERGER Bernard | 67 |
32 | DE BAAT Arjen | 66 |
45 | DMITRIYEV Valeriy | 69 |
49 | SARAMOTINS Aleksejs | 75 |