Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
van Dijk
1
74 kgCapelle
2
75 kgMoreni
5
65 kgInaudi
6
67 kgPoitschke
7
73 kgWrolich
9
68 kgAbakoumov
11
68 kgPollack
13
77 kgPieri
14
78 kgVanlandschoot
18
67 kgSerina
22
73 kgFlickinger
25
78 kgVierhouten
26
71 kgLjungqvist
27
73 kgKuyckx
29
68 kgOrdowski
30
59 kgVan Impe
31
75 kg
1
74 kgCapelle
2
75 kgMoreni
5
65 kgInaudi
6
67 kgPoitschke
7
73 kgWrolich
9
68 kgAbakoumov
11
68 kgPollack
13
77 kgPieri
14
78 kgVanlandschoot
18
67 kgSerina
22
73 kgFlickinger
25
78 kgVierhouten
26
71 kgLjungqvist
27
73 kgKuyckx
29
68 kgOrdowski
30
59 kgVan Impe
31
75 kg
Weight (KG) →
Result →
78
59
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DIJK Stefan | 74 |
2 | CAPELLE Ludovic | 75 |
5 | MORENI Cristian | 65 |
6 | INAUDI Nicolas | 67 |
7 | POITSCHKE Enrico | 73 |
9 | WROLICH Peter | 68 |
11 | ABAKOUMOV Igor | 68 |
13 | POLLACK Olaf | 77 |
14 | PIERI Dario | 78 |
18 | VANLANDSCHOOT James | 67 |
22 | SERINA Corrado | 73 |
25 | FLICKINGER Andy | 78 |
26 | VIERHOUTEN Aart | 71 |
27 | LJUNGQVIST Marcus | 73 |
29 | KUYCKX Jan | 68 |
30 | ORDOWSKI Volker | 59 |
31 | VAN IMPE Kevin | 75 |