Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 59
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
van Dijk
1
74 kgBožič
3
70 kgGeslin
5
68 kgNaulleau
10
72 kgMartias
13
71 kgLeukemans
14
67 kgRenier
15
69 kgDetilloux
18
62 kgGazvoda
19
72 kgCaethoven
21
67 kgGilmore
24
67 kgGardeyn
35
75 kgSprick
38
71 kgGadret
62
58 kgChavanel
67
77 kgLloyd
68
70 kgEeckhout
70
73 kgStam
72
64 kg
1
74 kgBožič
3
70 kgGeslin
5
68 kgNaulleau
10
72 kgMartias
13
71 kgLeukemans
14
67 kgRenier
15
69 kgDetilloux
18
62 kgGazvoda
19
72 kgCaethoven
21
67 kgGilmore
24
67 kgGardeyn
35
75 kgSprick
38
71 kgGadret
62
58 kgChavanel
67
77 kgLloyd
68
70 kgEeckhout
70
73 kgStam
72
64 kg
Weight (KG) →
Result →
77
58
1
72
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DIJK Stefan | 74 |
3 | BOŽIČ Borut | 70 |
5 | GESLIN Anthony | 68 |
10 | NAULLEAU Alexandre | 72 |
13 | MARTIAS Rony | 71 |
14 | LEUKEMANS Björn | 67 |
15 | RENIER Franck | 69 |
18 | DETILLOUX Christophe | 62 |
19 | GAZVODA Gregor | 72 |
21 | CAETHOVEN Steven | 67 |
24 | GILMORE Matthew | 67 |
35 | GARDEYN Gorik | 75 |
38 | SPRICK Matthieu | 71 |
62 | GADRET John | 58 |
67 | CHAVANEL Sébastien | 77 |
68 | LLOYD Daniel | 70 |
70 | EECKHOUT Niko | 73 |
72 | STAM Danny | 64 |