Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 50
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Masselis
2
65 kgHanlet
3
70 kgBlaise
4
72 kgLéonard
5
69 kgVan den Berghe
6
65 kgCoolsaet
7
73 kgLeturgie
8
69 kgDupont
9
68 kgNiedergang
10
70 kgDefraeye
12
67 kgBuysse
13
72 kgPaulmier
14
69 kgDhulst
16
72 kgBouillet
17
74 kgLafourcade
18
62 kgCatteau
20
84 kgDesmedt
21
64 kgPetitjean
23
62 kgMaitron
24
59 kgPardon
26
54 kgFleury
27
64 kgDoury
28
62 kgLachaise
31
69 kg
2
65 kgHanlet
3
70 kgBlaise
4
72 kgLéonard
5
69 kgVan den Berghe
6
65 kgCoolsaet
7
73 kgLeturgie
8
69 kgDupont
9
68 kgNiedergang
10
70 kgDefraeye
12
67 kgBuysse
13
72 kgPaulmier
14
69 kgDhulst
16
72 kgBouillet
17
74 kgLafourcade
18
62 kgCatteau
20
84 kgDesmedt
21
64 kgPetitjean
23
62 kgMaitron
24
59 kgPardon
26
54 kgFleury
27
64 kgDoury
28
62 kgLachaise
31
69 kg
Weight (KG) →
Result →
84
54
2
31
# | Rider | Weight (KG) |
---|---|---|
2 | MASSELIS Jules | 65 |
3 | HANLET Henri | 70 |
4 | BLAISE André | 72 |
5 | LÉONARD Edouard | 69 |
6 | VAN DEN BERGHE René | 65 |
7 | COOLSAET Louis | 73 |
8 | LETURGIE Maurice | 69 |
9 | DUPONT Albert | 68 |
10 | NIEDERGANG Constant | 70 |
12 | DEFRAEYE Odiel | 67 |
13 | BUYSSE Marcel | 72 |
14 | PAULMIER Georges | 69 |
16 | DHULST Vincent | 72 |
17 | BOUILLET Jean | 74 |
18 | LAFOURCADE François | 62 |
20 | CATTEAU Aloïs | 84 |
21 | DESMEDT Albert | 64 |
23 | PETITJEAN Luc | 62 |
24 | MAITRON Julien | 59 |
26 | PARDON Maurice | 54 |
27 | FLEURY Georges | 64 |
28 | DOURY Octave | 62 |
31 | LACHAISE Émile | 69 |